SciPost Submission Page
Pauli crystal melting in shaken optical traps
by Jiabing Xiang, Paolo Molignini, Miriam Büttner, Axel U. J. Lode
This Submission thread is now published as
Submission summary
Authors (as registered SciPost users): | Paolo Molignini · Jiabing Xiang |
Submission information | |
---|---|
Preprint Link: | https://arxiv.org/abs/2204.10335v3 (pdf) |
Date accepted: | 2022-10-11 |
Date submitted: | 2022-09-23 10:02 |
Submitted by: | Xiang, Jiabing |
Submitted to: | SciPost Physics |
Ontological classification | |
---|---|
Academic field: | Physics |
Specialties: |
|
Approaches: | Theoretical, Computational |
Abstract
Pauli crystals are ordered geometric structures that emerge in trapped noninteracting fermionic systems due to their underlying Pauli repulsion. The deformation of Pauli crystals - often called melting - has been recently observed in experiments, but the mechanism that leads to it remains unclear. We address this question by studying the melting dynamics of N=6 fermions as a function of periodic driving and experimental imperfections in the trap (anisotropy and anharmonicity) by employing a combination of numerical simulations and Floquet theory. Surprisingly, we reveal that the melting of Pauli crystals is not simply a direct consequence of an increase in system energy, but is instead related to the trap geometry and the population of the Floquet modes. We show that the melting is absent in traps without imperfections and triggered only by a sufficiently large shaking amplitude in traps with imperfections.
Author comments upon resubmission
We thank you for sending over the referee's report. In the answer below we give the reply to the question raised by the referee.
RC#1:
As the authors replied the one-body density of the fermionic system can reveal the most probable positions of the particles, without however fully exposing the statistical correlations. This is the reason why one has to consider the configuration density, where the Pauli crystals are identified. Is therefore the configuration density suitable for extracting the crucial information from the N-body density, which fully describes the system ? If this is the case, the configuration density does not also suffer from the visualization constraints inherent in the N-body density, and this might be another reason why it is preferred. If the above arguments are valid, my opinion is that it would be very helpful to include them explicitly in Section III A of the main text.
AR:
We thank the referee for their insightful comment. Yes, the one-body density only reveals the most probable position of a single particle instead of the full information about statistical correlations contained in the N-body density. As the referee suggests, the configuration density is indeed an efficient method to extract these correlations by bypassing the visualization constraints of the N-body density. As the referee suggested, we incorporated this remark explicitly in Section III A of the main text.
List of changes
1. We incorporated the referee's remark about the configuration density explicitly in Section III A of the main text.
Published as SciPost Phys. 14, 003 (2023)