SciPost Submission Page
Improved Hilbert space exploration algorithms for finite temperature calculations
by A. J. J. M. de Klerk, J. -S. Caux
This Submission thread is now published as
Submission summary
Submission information |
Preprint Link: |
https://arxiv.org/abs/2301.09224v3
(pdf)
|
Date accepted: |
2023-04-19 |
Date submitted: |
2023-04-04 20:51 |
Submitted by: |
de Klerk, Albertus |
Submitted to: |
SciPost Physics Core |
Ontological classification |
Academic field: |
Physics |
Specialties: |
- Condensed Matter Physics - Theory
- Condensed Matter Physics - Computational
- Quantum Physics
|
Approaches: |
Theoretical, Computational |
Abstract
Computing correlation functions in strongly-interacting quantum systems is one of the most important challenges of modern condensed matter theory, due to their importance in the description of many physical observables. Simultaneously, this challenge is one of the most difficult to address, due to the inapplicability of traditional perturbative methods or the few-body limitations of numerical approaches. For special cases, where the model is integrable, methods based on the Bethe Ansatz have succeeded in computing the spectrum and given us analytical expressions for the matrix elements of physically important operators. However, leveraging these results to compute correlation functions generally requires the numerical evaluation of summations over eigenstates. To perform these summations efficiently, Hilbert space exploration algorithms have been developed which has resulted most notably in the ABACUS library. While this performs quite well for correlations on ground states or low-entropy states, the case of high entropy states (most importantly at finite temperatures or after a quantum quench) is more difficult, and leaves room for improvement. In this work, we develop a new Hilbert space exploration algorithm for the Lieb-Liniger model, specially tailored to optimize the computational order on finite-entropy states for correlations of density-related operators.