SciPost Submission Page
Hasse Diagrams for Gapless SPT and SSB Phases with Non-Invertible Symmetries
by Lakshya Bhardwaj, Daniel Pajer, Sakura Schäfer-Nameki, Alison Warman
Submission summary
Authors (as registered SciPost users): | Sakura Schäfer-Nameki · Alison Warman |
Submission information | |
---|---|
Preprint Link: | https://arxiv.org/abs/2403.00905v3 (pdf) |
Date submitted: | 2025-01-02 11:52 |
Submitted by: | Warman, Alison |
Submitted to: | SciPost Physics |
Ontological classification | |
---|---|
Academic field: | Physics |
Specialties: |
|
Approach: | Theoretical |
Abstract
We discuss (1+1)d gapless phases with non-invertible global symmetries, also referred to as categorical symmetries. This includes gapless phases showing properties analogous to gapped symmetry protected topological (SPT) phases, known as gapless SPT (or gSPT) phases; and gapless phases showing properties analogous to gapped spontaneous symmetry broken (SSB) phases, that we refer to as gapless SSB (or gSSB) phases. We fit these gapless phases, along with gapped SPT and SSB phases, into a phase diagram describing possible deformations connecting them. This phase diagram is partially ordered and defines a so-called Hasse diagram. Based on these deformations, we identify gapless phases exhibiting symmetry protected criticality, that we refer to as intrinsically gapless SPT (igSPT) and intrinsically gapless SSB (igSSB) phases. This includes the first examples of igSPT and igSSB phases with non-invertible symmetries. Central to this analysis is the Symmetry Topological Field Theory (SymTFT), where each phase corresponds to a condensable algebra in the Drinfeld center of the symmetry category. On a mathematical note, gSPT phases are classified by functors between fusion categories, generalizing the fact that gapped SPT phases are classified by fiber functors; and gSSB phases are classified by functors from fusion to multi-fusion categories. Finally, our framework can be applied to understand gauging of trivially acting non-invertible symmetries, including possible patterns of decomposition arising due to such gaugings.
Author indications on fulfilling journal expectations
- Provide a novel and synergetic link between different research areas.
- Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
- Detail a groundbreaking theoretical/experimental/computational discovery
- Present a breakthrough on a previously-identified and long-standing research stumbling block