SciPost logo

SciPost Submission Page

Entanglement parity effects in the Kane-Fisher problem

by Chunyu Tan, Yuxiao Hang, Stephan Haas, Hubert Saleur

Submission summary

Authors (as registered SciPost users): Chunyu Tan
Submission information
Preprint Link: https://arxiv.org/abs/2405.09046v1  (pdf)
Date submitted: 2024-06-10 05:12
Submitted by: Tan, Chunyu
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Condensed Matter Physics - Theory
  • Condensed Matter Physics - Computational
  • Quantum Physics
Approaches: Theoretical, Computational

Abstract

We study the entanglement of a segment of length $\ell$ in an XXZ chain with one free extremity and the other connected to the rest of the system with a weak bond. We find that the von-Neumann entropy exhibits terms of order $O(1)$ with strong parity effects, that probe the physics associated with the weakened bond and its behavior under the RG (Kane Fisher problem). In contrast with the XX case studied previously the entropy difference $\delta S\equiv S^e-S^o$ gives rise now to a "resonance" curve which depends on the product $\ell T_B$, with $1/T_B$ a characteristic length scale akin to the Kondo length in Kondo problems. The problem is studied both numerically using DMRG and analytically near the healed and split fixed points. Interestingly - and in contrast with what happens in other impurity problems- $\delta S$ can, at least at lowest order, be tackled by conformal perturbation theory.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Login to report or comment