SciPost logo

SciPost Submission Page

Fermionic Non-Invertible Symmetries in (1+1)d: Gapped and Gapless Phases, Transitions, and Symmetry TFTs

by Lakshya Bhardwaj, Kansei Inamura, Apoorv Tiwari

Submission summary

Authors (as registered SciPost users): Lakshya Bhardwaj · Kansei Inamura
Submission information
Preprint Link: https://arxiv.org/abs/2405.09754v2  (pdf)
Date submitted: 2024-08-22 06:11
Submitted by: Inamura, Kansei
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Condensed Matter Physics - Theory
  • High-Energy Physics - Theory
Approach: Theoretical

Abstract

We study fermionic non-invertible symmetries in (1+1)d, which are generalized global symmetries that mix fermion parity symmetry with other invertible and non-invertible internal symmetries. Such symmetries are described by fermionic fusion supercategories, which are fusion $\pi$-supercategories with a choice of fermion parity. The aim of this paper is to flesh out the categorical Landau paradigm for fermionic symmetries. We use the formalism of Symmetry Topological Field Theory (SymTFT) to study possible gapped and gapless phases for such symmetries, along with possible deformations between these phases, which are organized into a Hasse phase diagram. The phases can be characterized in terms of sets of condensed, confined and deconfined generalized symmetry charges, reminiscent of notions familiar from superconductivity. Many of the gapless phases also serve as phase transitions between gapped phases. The associated fermionic conformal field theories (CFTs) can be obtained by performing generalized fermionic Kennedy-Tasaki (KT) transformations on bosonic CFTs describing simpler transitions. The fermionic non-invertible symmetries along with their charges and phases discussed here can be obtained from those of bosonic non-invertible symmetries via fermionization or Jordan-Wigner transformation, which is discussed in detail.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Login to report or comment