SciPost logo

SciPost Submission Page

Non-invertible and higher-form symmetries in 2+1d lattice gauge theories

by Yichul Choi, Yaman Sanghavi, Shu-Heng Shao, Yunqin Zheng

Submission summary

Authors (as registered SciPost users): Yunqin Zheng
Submission information
Preprint Link: https://arxiv.org/abs/2405.13105v1  (pdf)
Date submitted: 2024-06-12 14:39
Submitted by: Zheng, Yunqin
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Condensed Matter Physics - Theory
  • High-Energy Physics - Theory
Approach: Theoretical

Abstract

We explore exact generalized symmetries in the standard 2+1d lattice $\mathbb{Z}_2$ gauge theory coupled to the Ising model, and compare them with their continuum field theory counterparts. One model has a (non-anomalous) non-invertible symmetry, and we identify two distinct non-invertible symmetry protected topological phases. The non-invertible algebra involves a lattice condensation operator, which creates a toric code ground state from a product state. Another model has a mixed anomaly between a 1-form symmetry and an ordinary symmetry. This anomaly enforces a nontrivial transition in the phase diagram, consistent with the "Higgs=SPT" proposal. Finally, we discuss how the symmetries and anomalies in these two models are related by gauging, which is a 2+1d version of the Kennedy-Tasaki transformation.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Login to report or comment