SciPost logo

SciPost Submission Page

Interaction-induced strong zero modes in short quantum dot chains with time-reversal symmetry

by Ahmet Mert Bozkurt, Sebastian Miles, Sebastiaan Laurens Daniel ten Haaf, Chun-Xiao Liu, Fabian Hassler, Michael Wimmer

Submission summary

Authors (as registered SciPost users): A. Mert Bozkurt · Sebastian Miles · Michael Wimmer
Submission information
Preprint Link: https://arxiv.org/abs/2405.14940v1  (pdf)
Code repository: https://zenodo.org/records/11243862
Date submitted: 2024-06-06 16:09
Submitted by: Bozkurt, A. Mert
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Condensed Matter Physics - Theory
Approaches: Theoretical, Computational

Abstract

We theoretically explore the emergence of strong zero modes in a two-site chain consisting of two quantum dots coupled due to a central dot that mediates electron hopping and singlet superconducting pairing. In the presence of time-reversal symmetry, the on-site Coulomb interaction leads to a three-fold ground-state degeneracy when tuning the system to a sweet spot as a function of the inter-dot couplings. This degeneracy is protected against changes of the dot energies in the same way as "poor man's'' Majorana bound states in short Kitaev chains. In the limit of strong interactions, this protection is maximal and the entire spectrum becomes triply degenerate, indicating the emergence of a ''poor man's'' version of a strong zero mode. We explain the degeneracy and protection by constructing corresponding Majorana Kramers-pair operators and $\mathbb{Z}_3$-parafermion operators. The strong zero modes share many properties of Majorana bound states in short Kitaev chains, including the stability of zero-bias peaks in the conductance and the behavior upon coupling to an additional quantum dot. However, they can be distinguished through finite-bias spectroscopy and the exhibit a different behavior when scaling to longer chains.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Login to report or comment