We study finite temperature dynamical correlation functions of the magnetization operator in the one-dimensional Ising quantum field theory. Our approach is based on a finite temperature form factor series and on a Fredholm determinant representation of the correlators. While for space-like separations the Fredholm determinant can be efficiently evaluated numerically, for the time-like region it has convergence issues inherited from the form factor series. We develop a method to compute the correlation functions at time-like separations based on the analytic continuation of the space-time coordinates to complex values. Using this numerical technique, we explore all space-time and temperature regimes in both the ordered and disordered phases including short, large, and near-light-cone separations at low and high temperatures. We confirm the existing analytic predictions for the asymptotic behavior of the correlations except in the case of space-like correlations in the paramagnetic phase. For this case we derive a new closed form expression for the correlation length that has some unusual properties: it is a non-analytic function of both the space-time direction and the temperature, and its temperature dependence is non-monotonic.
Author indications on fulfilling journal expectations
Provide a novel and synergetic link between different research areas.
Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
Detail a groundbreaking theoretical/experimental/computational discovery
Present a breakthrough on a previously-identified and long-standing research stumbling block