SciPost logo

SciPost Submission Page

Dynamical correlation functions in the Ising field theory

by István Csépányi, Márton Kormos

Submission summary

Authors (as registered SciPost users): István Csépányi
Submission information
Preprint Link: https://arxiv.org/abs/2406.05100v3  (pdf)
Date accepted: 2024-11-04
Date submitted: 2024-10-23 15:08
Submitted by: Csépányi, István
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Quantum Physics
  • Statistical and Soft Matter Physics
Approaches: Theoretical, Computational

Abstract

We study finite temperature dynamical correlation functions of the magnetization operator in the one-dimensional Ising quantum field theory. Our approach is based on a finite temperature form factor series and on a Fredholm determinant representation of the correlators. While for space-like separations the Fredholm determinant can be efficiently evaluated numerically, for the time-like region it has convergence issues inherited from the form factor series. We develop a method to compute the correlation functions at time-like separations based on the analytic continuation of the space-time coordinates to complex values. Using this numerical technique, we explore all space-time and temperature regimes in both the ordered and disordered phases including short, large, and near-light-cone separations at low and high temperatures. We confirm the existing analytic predictions for the asymptotic behavior of the correlations except in the case of space-like correlations in the paramagnetic phase. For this case we derive a new closed form expression for the correlation length that has some unusual properties: it is a non-analytic function of both the space-time direction and the temperature, and its temperature dependence is non-monotonic.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
Accepted in target Journal

Editorial decision: For Journal SciPost Physics: Publish
(status: Editorial decision fixed and (if required) accepted by authors)

Login to report or comment