SciPost Submission Page
Fusion of Low-Entanglement Excitations in 2D Toric Code
by Jing-Yu Zhao, Xie Chen
Submission summary
Authors (as registered SciPost users): | Xie Chen · Jingyu Zhao |
Submission information | |
---|---|
Preprint Link: | https://arxiv.org/abs/2409.07544v1 (pdf) |
Date submitted: | 2024-10-02 05:33 |
Submitted by: | Zhao, Jingyu |
Submitted to: | SciPost Physics |
Ontological classification | |
---|---|
Academic field: | Physics |
Specialties: |
|
Approach: | Theoretical |
Abstract
On top of a $D$-dimensional gapped bulk state, Low Entanglement Excitations (LEE) on $d$($<D$)-dimensional sub-manifolds can have extensive energy but preserves the entanglement area law of the ground state. Due to their multi-dimensional nature, the LEEs embody a higher-category structure in quantum systems. They are the ground state of a modified Hamiltonian and hence capture the notions of `defects' of generalized symmetries. In previous works, we studied the low-entanglement excitations in a trivial phase as well as those in invertible phases. We find that LEEs in these phases have the same structure as lower-dimensional gapped phases and their defects within. In this paper, we study the LEEs inside non-invertible topological phases. We focus on the simple example of $\mathbb{Z}_2$ toric code and discuss how the fusion result of 1d LEEs with 0d morphisms can depend on both the choice of fusion circuit and the ordering of the fused defects.
Author indications on fulfilling journal expectations
- Provide a novel and synergetic link between different research areas.
- Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
- Detail a groundbreaking theoretical/experimental/computational discovery
- Present a breakthrough on a previously-identified and long-standing research stumbling block