SciPost logo

SciPost Submission Page

Describing Hadronization via Histories and Observables for Monte-Carlo Event Reweighting

by Christian Bierlich, Phil Ilten, Tony Menzo, Stephen Mrenna, Manuel Szewc, Michael K. Wilkinson, Ahmed Youssef, Jure Zupan

Submission summary

Authors (as registered SciPost users): Manuel Szewc
Submission information
Preprint Link: https://arxiv.org/abs/2410.06342v2  (pdf)
Code repository: https://gitlab.com/uchep/mlhad/-/tree/master/HOMER
Date submitted: 2024-10-30 14:34
Submitted by: Szewc, Manuel
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • High-Energy Physics - Experiment
  • High-Energy Physics - Phenomenology
Approaches: Computational, Phenomenological

Abstract

We introduce a novel method for extracting a fragmentation model directly from experimental data without requiring an explicit parametric form, called Histories and Observables for Monte-Carlo Event Reweighting (HOMER), consisting of three steps: the training of a classifier between simulation and data, the inference of single fragmentation weights, and the calculation of the weight for the full hadronization chain. We illustrate the use of HOMER on a simplified hadronization problem, a $q\bar{q}$ string fragmenting into pions, and extract a modified Lund string fragmentation function $f(z)$. We then demonstrate the use of HOMER on three types of experimental data: (i) binned distributions of high level observables, (ii) unbinned event-by-event distributions of these observables, and (iii) full particle cloud information. After demonstrating that $f(z)$ can be extracted from data (the inverse of hadronization), we also show that, at least in this limited setup, the fidelity of the extracted $f(z)$ suffers only limited loss when moving from (i) to (ii) to (iii). Public code is available at https://gitlab.com/uchep/mlhad.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Login to report or comment