SciPost logo

SciPost Submission Page

CP Violation and Flavour-Violating Di-Higgs Couplings in the Randall-Sundrum Model

by Gayatri Ghosh

Submission summary

Authors (as registered SciPost users): Gayatri Ghosh
Submission information
Preprint Link: https://arxiv.org/abs/2411.06451v1  (pdf)
Date submitted: 2024-12-17 07:55
Submitted by: Ghosh, Gayatri
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • High-Energy Physics - Theory
  • High-Energy Physics - Phenomenology
Approaches: Theoretical, Phenomenological

Abstract

The Randall-Sundrum (RS) model offers a compelling framework to address the hierarchy problem and provides new sources of CP violation beyond the Standard Model (SM). The motivation for studying CP violation in the RS model arises from the insufficiency of CP-violating phases in the SM to account for the observed matter-antimatter asymmetry in the universe. In this work, we explore CP violation through flavour-violating di-Higgs couplings, which emerge due to the localization of bulk fermions and the Higgs near the TeV brane. The analysis focuses on the role of these couplings in di-Higgs production and decay processes, leading to enhanced CP-violating effects. Numerical simulations show that the predicted CP-violating observables are within experimental bounds and could be tested in future collider experiments. The study concludes that flavour-violating di-Higgs couplings in the RS model offer a promising avenue for discovering new sources of CP violation, with significant implications for both collider physics and the understanding of the matter-antimatter asymmetry.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Login to report or comment