Loading [MathJax]/extensions/Safe.js
SciPost logo

SciPost Submission Page

Dynamical renormalization group analysis of $O(n)$ model in steady shear flow

by Harukuni Ikeda, Hiroyoshi Nakano

Submission summary

Authors (as registered SciPost users): Harukuni Ikeda
Submission information
Preprint Link: https://arxiv.org/abs/2412.02111v1  (pdf)
Date submitted: 2024-12-18 06:16
Submitted by: Ikeda, Harukuni
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Condensed Matter Physics - Theory
  • Statistical and Soft Matter Physics
Approach: Theoretical

Abstract

We study the critical behavior of the $O(n)$ model under steady shear flow using a dynamical renormalization group (RG) method. Incorporating the strong anisotropy in scaling ansatz, which has been neglected in earlier RG analyses, we identify a new stable Gaussian fixed point. This fixed point reproduces the anisotropic scaling of static and dynamical critical exponents for both non-conserved (Model A) and conserved (Model B) order parameters. Notably, the upper critical dimensions are $d_{\text{up}} = 2$ for the non-conserved order parameter (Model A) and $d_{\text{up}} = 0$ for the conserved order parameter (Model B), implying that the mean-field critical exponents are observed even in both $d=2$ and $3$ dimensions. Furthermore, the scaling exponent of the order parameter is negative for all dimensions $d \geq 2$, indicating that shear flow stabilizes the long-range order associated with continuous symmetry breaking even in $d = 2$. In other words, the lower critical dimensions are $d_{\rm low} < 2$ for both types of order parameters. This contrasts with equilibrium systems, where the Hohenberg -- Mermin -- Wagner theorem prohibits continuous symmetry breaking in $d = 2$.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Login to report or comment