SciPost Submission Page
Simplex tensor network renormalization group for boundary theory of 3+1D symTFT
by Kaixin Ji, Lin Chen, Li-Ping Yang, Ling-Yan Hung
Submission summary
Authors (as registered SciPost users): | Kaixin Ji |
Submission information | |
---|---|
Preprint Link: | https://arxiv.org/abs/2412.08374v1 (pdf) |
Date submitted: | 2025-01-20 05:40 |
Submitted by: | Ji, Kaixin |
Submitted to: | SciPost Physics |
Ontological classification | |
---|---|
Academic field: | Physics |
Specialties: |
|
Approaches: | Theoretical, Computational |
Abstract
Following the construction in arXiv:2210.12127, we develop a symmetry-preserving renormalization group (RG) flow for 3D symmetric theories. These theories are expressed as boundary conditions of a symTFT, which in our case is a 3+1D Dijkgraaf-Witten topological theory in the bulk. The boundary is geometrically organized into tetrahedra and represented as a tensor network, which we refer to as the "simplex tensor network" state. Each simplex tensor is assigned indices corresponding to its vertices, edges, and faces. We propose a numerical algorithm to implement RG flows for these boundary conditions, and explicitly demonstrate its application to a $\mathbb{Z}_2$ symmetric theory. By linearly interpolating between three topological fixed-point boundaries, we map the phase transitions characterized by local and non-local order parameters, which respectively detects the breaking of a 0-form and a 2-form symmetry. This formalism is readily extendable to other discrete symmetry groups and, in principle, can be generalized to describe 3D symmetric topological orders.
Author indications on fulfilling journal expectations
- Provide a novel and synergetic link between different research areas.
- Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
- Detail a groundbreaking theoretical/experimental/computational discovery
- Present a breakthrough on a previously-identified and long-standing research stumbling block