SciPost Submission Page
Tunable anharmonicity in cavity optomechanics in the unresolved sideband regime
by Jonathan L. Wise, Clement Dutreix, Fabio Pistolesi
Submission summary
Authors (as registered SciPost users): | Jonathan Wise |
Submission information | |
---|---|
Preprint Link: | https://arxiv.org/abs/2501.08914v1 (pdf) |
Date submitted: | 2025-01-16 15:29 |
Submitted by: | Wise, Jonathan |
Submitted to: | SciPost Physics |
Ontological classification | |
---|---|
Academic field: | Physics |
Specialties: |
|
Approaches: | Theoretical, Computational |
Abstract
Introducing a controlled and strong anharmonicity in mechanical systems is a present challenge of nanomechanics. In cavity optomechanics a mechanical oscillator may be made anharmonic by ponderomotively coupling its motion to the light field of a laser-driven cavity. In the regime where the mechanical resonating frequency and the single-photon coupling constant are small compared to the decay rate of the cavity field, it turns out that the quantum electromagnetic fluctuations of the laser field drive the oscillator into a high-temperature thermal state. The motional state may however be highly non-Gaussian; we show that a precise tuning of system parameters may even lead to a purely quartic effective potential for the mechanical oscillator. We present a theory that predicts the measurable signatures left by the mechanical anharmonicity. In particular, we obtain analytically and numerically the mechanical displacement spectrum, and explore the imprints of the mechanical anharmonicity on the cavity light field.
Author indications on fulfilling journal expectations
- Provide a novel and synergetic link between different research areas.
- Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
- Detail a groundbreaking theoretical/experimental/computational discovery
- Present a breakthrough on a previously-identified and long-standing research stumbling block