SciPost Submission Page
Minimal Factorization of Chern-Simons Theory -- Gravitational Anyonic Edge Modes
by Thomas G. Mertens, Qi-Feng Wu
Submission summary
| Authors (as registered SciPost users): | Qi-Feng Wu |
| Submission information | |
|---|---|
| Preprint Link: | https://arxiv.org/abs/2505.00501v3 (pdf) |
| Date submitted: | Oct. 21, 2025, 1:57 p.m. |
| Submitted by: | Qi-Feng Wu |
| Submitted to: | SciPost Physics |
| Ontological classification | |
|---|---|
| Academic field: | Physics |
| Specialties: |
|
| Approach: | Theoretical |
Abstract
One approach to analyzing entanglement in a gauge theory is embedding it into a factorized theory with edge modes on the entangling boundary. For topological quantum field theories (TQFT), this naturally leads to factorizing a TQFT by adding local edge modes associated with the corresponding CFT. In this work, we instead construct a minimal set of edge modes compatible with the topological invariance of Chern-Simons theory. This leads us to propose a minimal factorization map. These minimal edge modes can be interpreted as the degrees of freedom of a particle on a quantum group. Of particular interest is three-dimensional gravity as a Chern-Simons theory with gauge group SL$(2,\mathbb{R}) \times$ SL$(2,\mathbb{R})$. Our minimal factorization proposal uniquely gives rise to quantum group edge modes factorizing the bulk state space of 3d gravity. This agrees with earlier proposals that relate the Bekenstein-Hawking entropy in 3d gravity to topological entanglement entropy.
Author indications on fulfilling journal expectations
- Provide a novel and synergetic link between different research areas.
- Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
- Detail a groundbreaking theoretical/experimental/computational discovery
- Present a breakthrough on a previously-identified and long-standing research stumbling block
