SciPost logo

SciPost Submission Page

On spectrally flowed local vertex operators in AdS$_3$

by Sergio Iguri and Nicolas Kovensky

This Submission thread is now published as

Submission summary

Authors (as registered SciPost users): Sergio Iguri · Nicolas Kovensky
Submission information
Preprint Link: scipost_202208_00011v3  (pdf)
Date accepted: 2022-10-06
Date submitted: 2022-09-28 11:07
Submitted by: Kovensky, Nicolas
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • High-Energy Physics - Theory
Approach: Theoretical

Abstract

We provide a novel local definition for spectrally flowed vertex operators in the SL(2,R)-WZW model, generalising the proposal of Maldacena and Ooguri in [arXiv:hep-th/0111180] for the singly-flowed case to all ω>1. This allows us to establish the precise connection between the computation of correlators using the so-called spectral flow operator, and the methods introduced recently by Dei and Eberhardt in [arXiv:2105.12130] based on local Ward identities. We show that the auxiliary variable y used in the latter paper arises naturally from a point-splitting procedure in the space-time coordinate. The recursion relations satisfied by spectrally flowed correlators, which take the form of partial differential equations in y-space, then correspond to null-state conditions for generalised spectral flowed operators. We highlight the role of certain SL(2,R) discrete module isomorphisms in this context, and prove the validity of the conjecture put forward in [arXiv:2105.12130] for y-space structure constants of three-point functions with arbitrary spectral flow charges.

Author comments upon resubmission

Ref.[41] added.

Published as SciPost Phys. 13, 115 (2022)

Login to report or comment