SciPost logo

SciPost Submission Page

Fourier-transformed gauge theory models of three-dimensional topological orders with gapped boundaries

by Siyuan Wang, Yanyan Chen, Hongyu Wang, Yuting Hu, Yidun Wan

Submission summary

Authors (as registered SciPost users): Siyuan Wang
Submission information
Preprint Link: scipost_202406_00062v1  (pdf)
Date submitted: 2024-06-28 14:04
Submitted by: Wang, Siyuan
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Condensed Matter Physics - Theory
  • High-Energy Physics - Theory
  • Mathematical Physics
Approach: Theoretical

Abstract

In this paper, we apply the method of Fourier transform and basis rewriting developed in [JHEP02(2020)030] for the two-dimensional quantum double model of topological orders to the three-dimensional gauge theory model (with a gauge group G) of three-dimensional topological orders. We find that the gapped boundary condition of the gauge theory model is characterized by a Frobenius algebra in the representation category Rep(G) of G, which also describes the charge splitting and condensation on the boundary. We also show that our Fourier transform maps the three-dimensional gauge theory model with input data G to the Walker-Wang model with input data Rep(G) on a trivalent lattice with dangling edges, after truncating the Hilbert space by projecting all dangling edges to the trivial representation of G. This Fourier transform also provides a systematic construction of the gapped boundary theory of the Walker-Wang model. This establishes a correspondence between two types of topological field theories: the extended Dijkgraaf-Witten and extended Crane-Yetter theories.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Login to report or comment