SciPost logo

SciPost Submission Page

Topologically ordered steady states in open quantum systems

by Zijian Wang, Xu-Dong Dai, He-Ran Wang, Zhong Wang

Submission summary

Authors (as registered SciPost users): Heran Wang · Zijian Wang
Submission information
Preprint Link: scipost_202409_00013v1  (pdf)
Date submitted: 2024-09-11 15:37
Submitted by: Wang, Zijian
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Condensed Matter Physics - Theory
  • Quantum Physics
Approach: Theoretical

Abstract

The interplay between dissipation and correlation can lead to novel emergent phenomena in open systems. Here we investigate ``steady-state topological order'' defined by the robust topological degeneracy of steady states, which is a generalization of the ground-state topological degeneracy of closed systems. Specifically, we construct two representative Liouvillians using engineered dissipation, and exactly solve the steady states with topological degeneracy. We find that while the steady-state topological degeneracy is fragile under noise in two dimensions, it is stable in three dimensions, where a genuine many-body phase with topological degeneracy is realized. We identify universal features of steady-state topological physics such as the deconfined emergent gauge field and slow relaxation dynamics of topological defects. The transition from a topologically ordered phase to a trivial phase is also investigated via numerical simulation. Our work highlights the essential difference between ground-state topological order in closed systems and steady-state topological order in open systems.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Login to report or comment