Loading [MathJax]/jax/output/CommonHTML/jax.js
SciPost logo

SciPost Submission Page

Generalized Komar charges and Smarr formulas for black holes and boson stars

by Romina Ballesteros and Tomas Ortin

Submission summary

Authors (as registered SciPost users): Tomás Ortín
Submission information
Preprint Link: scipost_202411_00021v2  (pdf)
Date accepted: 2025-04-02
Date submitted: 2025-02-28 17:13
Submitted by: Ortín, Tomás
Submitted to: SciPost Physics Core
Ontological classification
Academic field: Physics
Specialties:
  • Gravitation, Cosmology and Astroparticle Physics
  • High-Energy Physics - Theory
  • Mathematical Physics
Approach: Theoretical

Abstract

The standard Komar charge is a (d−2)(d−2)-form that can be defined in spacetimes admitting a Killing vector and which is closed when the vacuum Einstein equations are satisfied. Its integral at spatial infinity (the Komar integral) gives the conserved charge associated to the Killing vector, and, due to its on-shell closedness, the same value (expressed in terms of other physical variables) is obtained integrating over the event horizon (if any). This equality is the basis of the Smarr formula. This charge can be generalized so that it still is closed on-shell in presence of matter and its integrals give generalizations of the Smarr formula. We show how the Komar charge and other closed (d−2)(d−2)-form charges can be used to prove non-existence theorems for gravitational solitons and boson stars. In particular, we show how one can deal with generalized symmetric fields (invariant under a combination of isometries and other global symmetries) and how the geralized symmetric ansatz permits to evade the non-existence theorems.

Author comments upon resubmission

Dear editor,

After careful reading of the two referee's reports we have made a number of
changes in the manuscript that we list in our answers to the referees.

Answers to the questions posed by referee 1:

\begin{enumerate} \item As we have commented in the paper, other methods have been used to   derive Smarr formulae and one may say that they are, in the end, equally   effective, since formulae which are identically satisfied for the relevant   black hole solutions are derived. The same basic relation can be expressed   in terms of different variables )as in the references mentioned by the   referee), but not all variables have the same physical standing.    It is well known that in General Relativity only the total (ADM) mass and   angular momentum, defined by surface integrals at infinity, are conserved   and that there is no invariant definition of local mass/energy or angular   momentum density that allows the assignment of some amount of energy or   angular momentum to a given spacetime region, like the event horizon. It   seems reasonable to expect that meaningful physical expressions should be   exclusively and finally written in terms of them.    The method we use here (which was pioneered by Bardeen, Carter and Hawking   in the new references [5,6], see also the new references [7,8]) only   involves surface integrals and, therefore, establishes a clear separation   between quantities which are defined asymptotically and quantities which are   defined on the event horizon. The former are total total, ADM conserved   charges, some of them (electric and magnetic charges) multiplied by their   chemical potentials evaluated at infinity and the latter are the temperature   and entropy, total electric and magnetic charges and their chemical   potentials evaluated over the horizon. The reason why the total electric and   magnetic charges appear in both integrals is that they satisfy Gauss laws.    In contrast to this, the method used in the references mentioned by the   referee and in Townsend's lectures involves volume integrals. The results of   these volume integrals can be, in the end, may be empirically related to   total, ADM, conserved charges but, by construction, they cannot be   identified with energies/masses. When the charges are volume integrals of   conserved currents associated to global symmetries, they cannot be directly   associated to the black hole (they are computed on their exterior) nor to   the spacetime (they are not the total charges). We believe that it is not   natural to express the Smarr formula (which is nothing bu a Gibbs-Duhem-type   thermodynamical relation) in terms of this kind of charges which are not   thermodynamical variables.      The method used in this paper leads to this final expressions   in a more straightforward way.    We have made several changes in the paper to address this important point:   \begin{enumerate}   \item We have added a 2-page discussion of the charges associated to global     symmetries and computed as volume integrals in the context of black-hole     physics at the beginning of the introduction.   \item We have added the references [5-8] in which the method used in this     paper was used.   \item We have rephrased the paragraph below (1.24) to make our point clear.   \end{enumerate}

\item We have added a long footnote (number 13 in page 8) citing the classical
references suggested by the referee and commenting on their results, in
relation with ours.

\item In this work we do cover boson stars in the sense mentioned by the
referee, although we have probably used it in an unconventional or improper
way in a few places. Readers were warned of this fact in the second
paragraph below equation (1.32). Nevertheless, we have added a footnote in
page 12 (formerly page 10) commenting our terminology.




\end{enumerate}

Answers to the questions posed by referee 2:

\begin{enumerate} \item We have moved the content of  footnote~18 to footnote~5, combining it   with the previous content of that note and extending it a bit. $\mathcal{D}$   was implicitly defined in footnote~18 but we have added a line clarifying   its definition.  \item We have mentioned the reference suggested by the referee as well as   Heusler, Phys. Rev. D, 56, 961–973, (1997) in which the alternative method   to derive Smarr formulas is introduced. \end{enumerate}


We have made some further changes:

\begin{enumerate} \item We have corrected some misprints. \item We have cited the original and earlier works in which the Komar charge   and its generalizations were used to derive Smarr fomulae ([5,6,7,8] in the   revised version). \end{enumerate}

List of changes

\begin{enumerate}
\item We have added a 2-page discussion of the charges associated to global
symmetries and computed as volume integrals in the context of black-hole
physics at the beginning of the introduction.
\item We have added the references [5-8] in which the method used in this
paper was used.
\item We have rephrased the paragraph below (1.24) to make our point clear.
\item We have added a long footnote (number 13 in page 8) citing the classical
references suggested by the referee and commenting on their results, in
relation with ours.
\item We have added a footnote in page 12 (formerly page 10) commenting our terminology.
\item We have moved the content of footnote~18 to footnote~5, combining it
with the previous content of that note and extending it a bit. D
was implicitly defined in footnote~18 but we have added a line clarifying
its definition.
\item We have mentioned the reference suggested by the referee as well as
Heusler, Phys. Rev. D, 56, 961–973, (1997) in which the alternative method
to derive Smarr formulas is introduced.
\item We have corrected some misprints.
\item We have cited the original and earlier works in which the Komar charge
and its generalizations were used to derive Smarr fomulae ([5,6,7,8] in the
revised version).

\end{enumerate}

Current status:
Accepted in target Journal

Editorial decision: For Journal SciPost Physics Core: Publish
(status: Editorial decision fixed and (if required) accepted by authors)


Reports on this Submission

Report #2 by Anonymous (Referee 1) on 2025-3-22 (Invited Report)

Report

Changes to the draft of the paper make it now adequate for publication.

Recommendation

Publish (meets expectations and criteria for this Journal)

  • validity: -
  • significance: -
  • originality: -
  • clarity: -
  • formatting: -
  • grammar: -

Report #1 by Anonymous (Referee 2) on 2025-3-5 (Invited Report)

Report

I am happy with the changes made and I recommend the manuscript for publication.

Recommendation

Publish (meets expectations and criteria for this Journal)

  • validity: -
  • significance: -
  • originality: -
  • clarity: -
  • formatting: -
  • grammar: -

Login to report or comment