SciPost Submission Page
Quench dynamics of entanglement from crosscap states
by Konstantinos Chalas, Pasquale Calabrese, Colin Rylands
Submission summary
Authors (as registered SciPost users): | Konstantinos Chalas |
Submission information | |
---|---|
Preprint Link: | scipost_202412_00036v1 (pdf) |
Date submitted: | 2024-12-18 15:36 |
Submitted by: | Chalas, Konstantinos |
Submitted to: | SciPost Physics |
Ontological classification | |
---|---|
Academic field: | Physics |
Specialties: |
|
Approach: | Theoretical |
Abstract
The linear growth of entanglement after a quench from a state with short-range correlations is a universal feature of many body dynamics. It has been shown to occur in integrable and chaotic systems undergoing either Hamiltonian, Floquet or circuit dynamics and has also been observed in experiments. The entanglement dynamics emerging from long-range correlated states is far less studied, although no less viable using modern quantum simulation experiments. In this work, we investigate the dynamics of the bipartite entanglement entropy and mutual information from initial states which have long-range entanglement with correlation between antipodal points of a finite and periodic system. Starting from these crosscap states, we study both brickwork quantum circuits and Hamiltonian dynamics and find distinct patterns of behaviour depending on the type of dynamics and whether the system is integrable or chaotic. Specifically, we study both dual unitary and random unitary quantum circuits as well as free and interacting fermion Hamiltonians. For integrable systems, we find that after a time delay the entanglement experiences a linear in time decrease followed by a series of revivals, while, in contrast, chaotic systems exhibit constant entanglement entropy. On the other hand, both types of systems experience an immediate linear decrease of the mutual information in time. In chaotic systems this then vanishes, whereas integrable systems instead experience a series of revivals. We show how the quasiparticle and membrane pictures of entanglement dynamics can be modified to describe this behaviour, and derive explicitly the quasiparticle picture in the case of free fermion models which we then extend to all integrable systems.
Author indications on fulfilling journal expectations
- Provide a novel and synergetic link between different research areas.
- Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
- Detail a groundbreaking theoretical/experimental/computational discovery
- Present a breakthrough on a previously-identified and long-standing research stumbling block