Detector simulations are an exciting application of modern generative networks. Their sparse high-dimensional data combined with the required precision poses a serious challenge. We show how combining Conditional Flow Matching with transformer elements allows us to simulate the detector phase space reliably. Namely, we use an autoregressive transformer to simulate the energy of each layer, and a vision transformer for the high-dimensional voxel distributions. We show how dimension reduction via latent diffusion allows us to train more efficiently and how diffusion networks can be evaluated faster with bespoke solvers. We showcase our framework, CaloDREAM, on datasets 2 and 3 of the CaloChallenge.
Author indications on fulfilling journal expectations
Provide a novel and synergetic link between different research areas.
Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
Detail a groundbreaking theoretical/experimental/computational discovery
Present a breakthrough on a previously-identified and long-standing research stumbling block
Author comments upon resubmission
We thank the referees again for their careful consideration of our submission. We have implemented the requested changes, listed below.
List of changes
Page 14 (top): Added clarification about the difference between solvers in terms of high- and low-level classifier scores.
Page 14 (bottom): Added motivation for the need to look at classifier weights for both generated and true samples.