We define a relational notion of a subsystem in theories of matrix quantum mechanics and show how the corresponding entanglement entropy can be given as a minimisation, exhibiting many similarities to the Ryu-Takayanagi formula. Our construction brings together the physics of entanglement edge modes, noncommutative geometry and quantum internal reference frames, to define a subsystem whose reduced state is (approximately) an incoherent sum of density matrices, corresponding to distinct spatial subregions. We show that in states where geometry emerges from semiclassical matrices, this sum is dominated by the subregion with minimal boundary area. As in the Ryu-Takayanagi formula, it is the computation of the entanglement that determines the subregion. We find that coarse-graining is essential in our microscopic derivation, in order to control the proliferation of highly curved and disconnected non-geometric subregions in the sum.
Author indications on fulfilling journal expectations
Provide a novel and synergetic link between different research areas.
Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
Detail a groundbreaking theoretical/experimental/computational discovery
Present a breakthrough on a previously-identified and long-standing research stumbling block
List of changes
1. Added sentence below 2.38 clarifying the meaning of left-quotient. 2. Added eqn 2.40