SciPost logo

SciPost Submission Page

A multi-parameter expansion for the evolution of asymmetric binaries in astrophysical environments

by Sayak Datta and Andrea Maselli

Submission summary

Authors (as registered SciPost users): Sayak Datta · Andrea Maselli
Submission information
Preprint Link: scipost_202507_00063v3  (pdf)
Date submitted: Jan. 17, 2026, 10:05 a.m.
Submitted by: Sayak Datta
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Gravitation, Cosmology and Astroparticle Physics
Approach: Theoretical

Abstract

Compact binaries with large mass asymmetries - such as Extreme and Intermediate Mass Ratio Inspirals - are unique probes of the astrophysical environments in which they evolve. Their long-lived and intricate dynamics allow for precise inference of source properties, provided waveform models are accurate enough to capture the full complexity of their orbital evolution. In this work, we develop a multi-parameter formalism, inspired by vacuum perturbation theory, to model asymmetric binaries embedded in general matter distributions with both radial and tangential pressures. In the regime of small deviations from the Schwarzschild metric, relevant to most astrophysical scenarios, the system admits a simplified description, where both metric and fluid perturbations can be cast into wave equations closely related to those of the vacuum case. This framework offers a practical approach to modeling the dynamics and the gravitational wave emission from binaries in realistic matter distributions, and can be modularly integrated with existing results for vacuum sources.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
Refereeing in preparation

Login to report or comment