Superflow decay in a toroidal Bose gas: The effect of quantum and thermal fluctuations
Zain Mehdi, Ashton S. Bradley, Joseph J. Hope, Stuart S. Szigeti
SciPost Phys. 11, 080 (2021) · published 21 October 2021
- doi: 10.21468/SciPostPhys.11.4.080
- Submissions/Reports
Abstract
We theoretically investigate the stochastic decay of persistent currents in a toroidal ultracold atomic superfluid caused by a perturbing barrier. Specifically, we perform detailed three-dimensional simulations to model the experiment of Kumar et al. in [Phys. Rev. A 95 021602 (2017)], which observed a strong temperature dependence in the timescale of superflow decay in an ultracold Bose gas. Our ab initio numerical approach exploits a classical-field framework that includes thermal fluctuations due to interactions between the superfluid and a thermal cloud, as well as the intrinsic quantum fluctuations of the Bose gas. In the low-temperature regime our simulations provide a quantitative description of the experimental decay timescales, improving on previous numerical and analytical approaches. At higher temperatures, our simulations give decay timescales that range over the same orders of magnitude observed in the experiment, however, there are some quantitative discrepancies that are not captured by any of the mechanisms we explore. Our results suggest a need for further experimental and theoretical studies into superflow stability.
Cited by 9
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Zain Mehdi,
- 2 Ashton Bradley,
- 1 Joseph Hope,
- 1 Stuart Szigeti
- 1 Australian National University [ANU]
- 2 The Dodd-Walls Centre for Photonic and Quantum Technologies [DWC]
- Australian Government
- Australian Research Council [ARC]
- Dodd-Walls Centre (through Organization: The Dodd-Walls Centre for Photonic and Quantum Technologies [DWC])
- Marsden Fund (through Organization: Royal Society Te Apārangi / Royal Society of New Zealand)