Efficient variational simulation of non-trivial quantum states
Wen Wei Ho, Timothy H. Hsieh
SciPost Phys. 6, 029 (2019) · published 7 March 2019
- doi: 10.21468/SciPostPhys.6.3.029
- Submissions/Reports
-
Abstract
We provide an efficient and general route for preparing non-trivial quantum states that are not adiabatically connected to unentangled product states. Our approach is a hybrid quantum-classical variational protocol that incorporates a feedback loop between a quantum simulator and a classical computer, and is experimentally realizable on near-term quantum devices of synthetic quantum systems. We find explicit protocols which prepare with perfect fidelities (i) the Greenberger-Horne-Zeilinger (GHZ) state, (ii) a quantum critical state, and (iii) a topologically ordered state, with $L$ variational parameters and physical runtimes $T$ that scale linearly with the system size $L$. We furthermore conjecture and support numerically that our protocol can prepare, with perfect fidelity and similar operational costs, the ground state of every point in the one dimensional transverse field Ising model phase diagram. Besides being practically useful, our results also illustrate the utility of such variational ans\"atze as good descriptions of non-trivial states of matter.
TY - JOUR
PB - SciPost Foundation
DO - 10.21468/SciPostPhys.6.3.029
TI - Efficient variational simulation of non-trivial quantum states
PY - 2019/03/07
UR - https://scipost.org/SciPostPhys.6.3.029
JF - SciPost Physics
JA - SciPost Phys.
VL - 6
IS - 3
SP - 029
A1 - Ho, Wen Wei
AU - Hsieh, Timothy H.
AB - We provide an efficient and general route for preparing non-trivial quantum states that are not adiabatically connected to unentangled product states. Our approach is a hybrid quantum-classical variational protocol that incorporates a feedback loop between a quantum simulator and a classical computer, and is experimentally realizable on near-term quantum devices of synthetic quantum systems. We find explicit protocols which prepare with perfect fidelities (i) the Greenberger-Horne-Zeilinger (GHZ) state, (ii) a quantum critical state, and (iii) a topologically ordered state, with $L$ variational parameters and physical runtimes $T$ that scale linearly with the system size $L$. We furthermore conjecture and support numerically that our protocol can prepare, with perfect fidelity and similar operational costs, the ground state of every point in the one dimensional transverse field Ising model phase diagram. Besides being practically useful, our results also illustrate the utility of such variational ans\"atze as good descriptions of non-trivial states of matter.
ER -
@Article{10.21468/SciPostPhys.6.3.029,
title={{Efficient variational simulation of non-trivial quantum states}},
author={Wen Wei Ho and Timothy H. Hsieh},
journal={SciPost Phys.},
volume={6},
pages={029},
year={2019},
publisher={SciPost},
doi={10.21468/SciPostPhys.6.3.029},
url={https://scipost.org/10.21468/SciPostPhys.6.3.029},
}
Cited by 102

-
Morales et al., On the universality of the quantum approximate optimization algorithm
Quantum Inf Process 19, 291 (2020) [Crossref] -
Mitra et al., Cooling arbitrary near-critical systems using hyperbolic quenches
Phys. Rev. B 99, 104308 (2019) [Crossref] -
Jaiswal et al., Simulating a quasiparticle on a quantum device
Phys. Rev. A 111, 012629 (2025) [Crossref] -
Sun et al., Efficient variational quantum circuit structure for correlated topological phases
Phys. Rev. B 108, 075127 (2023) [Crossref] -
Shi et al., Locating quantum critical points with shallow quantum circuits
Physics Letters A 463, 128683 128683 (2023) [Crossref] -
Okatev et al., Exploring entanglement in finite-size quantum systems with degenerate ground state
Phys. Rev. B 111, 054443 (2025) [Crossref] -
Sewell et al., Variational quantum simulation of the critical Ising model with symmetry averaging
Phys. Rev. A 107, 042620 (2023) [Crossref] -
Szołdra et al., Unsupervised detection of decoupled subspaces: Many-body scars and beyond
Phys. Rev. B 105, 224205 (2022) [Crossref] -
Crognaletti et al., Equivariant Variational Quantum Eigensolver to detect phase transitions through energy level crossings
Quantum Sci. Technol. 10, 015048 (2025) [Crossref] -
Wiersema et al., Circuit connectivity boosts by quantum-classical-quantum interfaces
Phys. Rev. Research 4, 043221 (2022) [Crossref] -
Seiberg et al., Non-invertible symmetries and LSM-type constraints on a tensor product Hilbert space
SciPost Phys. 16, 154 (2024) [Crossref] -
Monroe et al., Programmable quantum simulations of spin systems with trapped ions
Rev. Mod. Phys. 93, 025001 (2021) [Crossref] -
Akshay et al., Circuit depth scaling for quantum approximate optimization
Phys. Rev. A 106, 042438 (2022) [Crossref] -
Wiersema et al., Classification of dynamical Lie algebras of 2-local spin systems on linear, circular and fully connected topologies
npj Quantum Inf 10, 110 (2024) [Crossref] -
Mele et al., Avoiding barren plateaus via transferability of smooth solutions in a Hamiltonian variational ansatz
Phys. Rev. A 106, L060401 (2022) [Crossref] -
Zhou et al., Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices
Phys. Rev. X 10, 021067 (2020) [Crossref] -
Bharti et al., Noisy intermediate-scale quantum algorithms
Rev. Mod. Phys. 94, 015004 (2022) [Crossref] -
Stenger et al., Implementing Jastrow-Gutzwiller operators on a quantum computer using the cascaded variational quantum eigensolver algorithm
Phys. Rev. A 107, 062606 (2023) [Crossref] -
Myerson-Jain et al., Decoherence through Ancilla Anyon Reservoirs
Phys. Rev. Lett. 134, 096503 (2025) [Crossref] -
Gundlapalli et al., Deterministic and Entanglement-Efficient Preparation of Amplitude-Encoded Quantum Registers
Phys. Rev. Applied 18, 024013 (2022) [Crossref] -
Vitale et al., Robust Estimation of the Quantum Fisher Information on a Quantum Processor
PRX Quantum 5, 030338 (2024) [Crossref] -
Cerezo et al., Variational quantum algorithms
Nat Rev Phys 3, 625 (2021) [Crossref] -
Cao et al., Mitigating algorithmic errors in quantum optimization through energy extrapolation
Quantum Sci. Technol. 8, 015004 (2023) [Crossref] -
Matos et al., Quantifying the Efficiency of State Preparation via Quantum Variational Eigensolvers
PRX Quantum 2, 010309 (2021) [Crossref] -
Lumia et al., Two-Dimensional
Z2
Lattice Gauge Theory on a Near-Term Quantum Simulator: Variational Quantum Optimization, Confinement, and Topological Order
PRX Quantum 3, 020320 (2022) [Crossref] -
Pagano et al., Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator
Proc. Natl. Acad. Sci. U.S.A. 117, 25396 (2020) [Crossref] -
Seki et al., Spatial, spin, and charge symmetry projections for a Fermi-Hubbard model on a quantum computer
Phys. Rev. A 105, 032419 (2022) [Crossref] -
Wang et al., Quantum dropout: On and over the hardness of quantum approximate optimization algorithm
Phys. Rev. Research 5, 023171 (2023) [Crossref] -
Hoshino et al., Entanglement swapping in critical quantum spin chains
Phys. Rev. B 111, 155143 (2025) [Crossref] -
Shirakawa et al., Discretized quantum adiabatic process for free fermions and comparison with the imaginary-time evolution
Phys. Rev. Research 3, 013004 (2021) [Crossref] -
Yue et al., Quantum approximate optimization algorithm in non-Markovian quantum systems
Phys. Scr. 98, 105104 (2023) [Crossref] -
Brady et al., Feedback-based optimally controlled quantum states
Phys. Rev. A 111, 062406 (2025) [Crossref] -
Marwaha et al., Bounds on approximating Max kXOR with quantum and classical local algorithms
Quantum 6, 757 757 (2022) [Crossref] -
Sehayek et al., Learnability scaling of quantum states: Restricted Boltzmann machines
Phys. Rev. B 100, 195125 (2019) [Crossref] -
Kattemölle et al., Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice
Phys. Rev. B 106, 214429 (2022) [Crossref] -
Wiersema et al., Exploring Entanglement and Optimization within the Hamiltonian Variational Ansatz
PRX Quantum 1, 020319 (2020) [Crossref] -
Matos et al., Characterization of variational quantum algorithms using free fermions
Quantum 7, 966 966 (2023) [Crossref] -
Drinko et al., Benchmarking variational quantum eigensolvers for entanglement detection in many-body Hamiltonian ground states
7, 023802 (2025) [Crossref] -
Alexeev et al., Quantum Computer Systems for Scientific Discovery
PRX Quantum 2, 017001 (2021) [Crossref] -
Zou et al., Channeling Quantum Criticality
Phys. Rev. Lett. 130, 250403 (2023) [Crossref] -
Wang et al., Bang-bang algorithms for quantum many-body ground states: A tensor network exploration
Phys. Rev. B 106, 195133 (2022) [Crossref] -
Shang et al., Schrödinger-Heisenberg Variational Quantum Algorithms
Phys. Rev. Lett. 131, 060406 (2023) [Crossref] -
Beach et al., Making trotters sprint: A variational imaginary time ansatz for quantum many-body systems
Phys. Rev. B 100, 094434 (2019) [Crossref] -
Torta et al., Quantum approximate optimization algorithm applied to the binary perceptron
Phys. Rev. B 107, 094202 (2023) [Crossref] -
Wierichs et al., Avoiding local minima in variational quantum eigensolvers with the natural gradient optimizer
Phys. Rev. Research 2, 043246 (2020) [Crossref] -
Tarocco et al., Compact multi-threshold quantum information driven ansatz for strongly interactive lattice spin models
J. Phys. A: Math. Theor. 58, 165302 (2025) [Crossref] -
Wiersema et al., Optimizing quantum circuits with Riemannian gradient flow
Phys. Rev. A 107, 062421 (2023) [Crossref] -
Zhu et al., Generation of thermofield double states and critical ground states with a quantum computer
Proc. Natl. Acad. Sci. U.S.A. 117, 25402 (2020) [Crossref] -
Seki et al., Symmetry-adapted variational quantum eigensolver
Phys. Rev. A 101, 052340 (2020) [Crossref] -
Nagano et al., Quench dynamics of the Schwinger model via variational quantum algorithms
Phys. Rev. D 108, 034501 (2023) [Crossref] -
Jiang et al., Error mitigation in variational quantum eigensolvers using tailored probabilistic machine learning
Phys. Rev. Research 6, 033069 (2024) [Crossref] -
Lotshaw et al., Simulations of frustrated Ising Hamiltonians using quantum approximate optimization
Phil. Trans. R. Soc. A. 381, 20210414 (2023) [Crossref] -
Sauvage et al., Building spatial symmetries into parameterized quantum circuits for faster training
Quantum Sci. Technol. 9, 015029 (2024) [Crossref] -
Parayil Mana et al., Kennedy-Tasaki transformation and noninvertible symmetry in lattice models beyond one dimension
Phys. Rev. B 109, 245129 (2024) [Crossref] -
O’Brien et al., Error Mitigation via Verified Phase Estimation
PRX Quantum 2, 020317 (2021) [Crossref] -
Sopena et al., Algebraic Bethe Circuits
Quantum 6, 796 796 (2022) [Crossref] -
Li et al., Benchmarking variational quantum eigensolvers for the square-octagon-lattice Kitaev model
Phys. Rev. Research 5, 033071 (2023) [Crossref] -
Mukherjee et al., Comparative study of adaptive variational quantum eigensolvers for multi-orbital impurity models
Commun Phys 6, 4 (2023) [Crossref] -
Kim et al., Advancing hybrid quantum-classical algorithms via mean operators
Phys. Rev. A 108, L010401 (2023) [Crossref] -
Getelina et al., Adaptive variational ground state preparation for spin-1 models on qubit-based architectures
Phys. Rev. B 109, 085128 (2024) [Crossref] -
Lotshaw et al., Modeling noise in global Mølmer-Sørensen interactions applied to quantum approximate optimization
Phys. Rev. A 107, 062406 (2023) [Crossref] -
Zhang et al., Adaptive variational quantum eigensolvers for highly excited states
Phys. Rev. B 104, 075159 (2021) [Crossref] -
Wiersema et al., Measurement-induced entanglement phase transitions in variational quantum circuits
SciPost Phys. 14, 147 (2023) [Crossref] -
Umeano et al., What can we Learn from Quantum Convolutional Neural Networks?
Adv Quantum Tech, 2400325 (2024) [Crossref] -
Wang et al., Noise-induced barren plateaus in variational quantum algorithms
Nat Commun 12, 6961 (2021) [Crossref] -
Liu et al., Training variational quantum algorithms with random gate activation
Phys. Rev. Research 5, L032040 (2023) [Crossref] -
Meyer et al., Exploiting Symmetry in Variational Quantum Machine Learning
PRX Quantum 4, 010328 (2023) [Crossref] -
Chen et al., Sequential quantum circuits as maps between gapped phases
Phys. Rev. B 109, 075116 (2024) [Crossref] -
Wu et al., Variational Thermal Quantum Simulation via Thermofield Double States
Phys. Rev. Lett. 123, 220502 (2019) [Crossref] -
Tabi et al.,
, 56 (2020) [Crossref] -
Akshay et al., Parameter concentrations in quantum approximate optimization
Phys. Rev. A 104, L010401 (2021) [Crossref] -
Sun et al., Improving the performance of quantum approximate optimization for preparing non-trivial quantum states without translational symmetry
New J. Phys. 25, 013015 (2023) [Crossref] -
Yao et al., Reinforcement Learning for Many-Body Ground-State Preparation Inspired by Counterdiabatic Driving
Phys. Rev. X 11, 031070 (2021) [Crossref] -
Gomes et al., Adaptive Variational Quantum Imaginary Time Evolution Approach for Ground State Preparation
Adv Quantum Tech 4, 2100114 (2021) [Crossref] -
Sayginel et al., A fault-tolerant variational quantum algorithm with limited T-depth
Quantum Sci. Technol. 9, 015015 (2024) [Crossref] -
Van Dyke et al., Preparing Bethe Ansatz Eigenstates on a Quantum Computer
PRX Quantum 2, 040329 (2021) [Crossref] -
Larocca et al., Diagnosing Barren Plateaus with Tools from Quantum Optimal Control
Quantum 6, 824 824 (2022) [Crossref] -
Kokail et al., Self-verifying variational quantum simulation of lattice models
Nature 569, 355 (2019) [Crossref] -
Sagastizabal et al., Variational preparation of finite-temperature states on a quantum computer
npj Quantum Inf 7, 130 (2021) [Crossref] -
Bravo et al., Circumventing traps in analog quantum machine learning algorithms through co-design
1, 046121 (2024) [Crossref] -
Park, Efficient ground state preparation in variational quantum eigensolver with symmetry-breaking layers
1, 016101 (2024) [Crossref] -
Lu et al., Realizing triality and $p$-ality by lattice twisted gauging in (1+1)d quantum spin systems
SciPost Phys. 17, 136 (2024) [Crossref] -
Innocenti et al., Ultrafast critical ground state preparation via bang–bang protocols
New J. Phys. 22, 093050 (2020) [Crossref] -
Roy et al., Efficient quantum circuits based on the quantum natural gradient
Phys. Rev. Research 6, 043083 (2024) [Crossref] -
Cobos et al., Noise-Aware Variational Eigensolvers: A Dissipative Route for Lattice Gauge Theories
PRX Quantum 5, 030340 (2024) [Crossref] -
Wang et al., Trainability enhancement of parameterized quantum circuits via reduced-domain parameter initialization
Phys. Rev. Applied 22, 054005 (2024) [Crossref] -
Tuan Hai et al., Multi-target quantum compilation algorithm
Mach. Learn.: Sci. Technol. 5, 045057 (2024) [Crossref] -
Nozaki et al., Inhomogeneous quenches as state preparation in two-dimensional conformal field theories
Phys. Rev. D 109, 126014 (2024) [Crossref] -
Xie et al., Variational thermal quantum simulation of the lattice Schwinger model
Phys. Rev. D 106, 054509 (2022) [Crossref] -
Dreyer et al., Quantum computing critical exponents
Phys. Rev. A 104, 062614 (2021) [Crossref] -
Liu et al., Probing many-body localization by excited-state variational quantum eigensolver
Phys. Rev. B 107, 024204 (2023) [Crossref] -
Chandarana et al., Digitized-counterdiabatic quantum approximate optimization algorithm
Phys. Rev. Research 4, 013141 (2022) [Crossref] -
Gyongyosi, Quantum State Optimization and Computational Pathway Evaluation for Gate-Model Quantum Computers
Sci Rep 10, 4543 (2020) [Crossref] -
Seiberg et al., Majorana chain and Ising model - (non-invertible) translations, anomalies, and emanant symmetries
SciPost Phys. 16, 064 (2024) [Crossref] -
Carrasquilla et al., Probabilistic simulation of quantum circuits using a deep-learning architecture
Phys. Rev. A 104, 032610 (2021) [Crossref] -
Nagano et al., Quantum data learning for quantum simulations in high-energy physics
Phys. Rev. Research 5, 043250 (2023) [Crossref] -
Wierichs et al., General parameter-shift rules for quantum gradients
Quantum 6, 677 677 (2022) [Crossref] -
Ho et al., Ultrafast variational simulation of nontrivial quantum states with long-range interactions
Phys. Rev. A 99, 052332 (2019) [Crossref] -
Rendon et al., Effects of cosine tapering window on quantum phase estimation
Phys. Rev. D 106, 034503 (2022) [Crossref] -
Qin et al., Applicability of measurement-based quantum computation towards physically-driven variational quantum eigensolver
New J. Phys. 26, 073040 (2024) [Crossref] -
Yu et al., Simulating large-size quantum spin chains on cloud-based superconducting quantum computers
Phys. Rev. Research 5, 013183 (2023) [Crossref] -
Titum et al., Nonequilibrium Criticality in Quench Dynamics of Long-Range Spin Models
Phys. Rev. Lett. 125, 040602 (2020) [Crossref]
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Wen Wei Ho,
- 2 3 Timothy H. Hsieh
- 1 Harvard University
- 2 Institut Périmètre de physique théorique / Perimeter Institute [PI]
- 3 University of California, Santa Barbara [UCSB]