Phonon redshift and Hubble friction in an expanding BEC

Stephen Eckel, Ted Jacobson

SciPost Phys. 10, 064 (2021) · published 11 March 2021

Abstract

We revisit the theoretical analysis of an expanding ring-shaped Bose-Einstein condensate. Starting from the action and integrating over dimensions orthogonal to the phonon's direction of travel, we derive an effective one-dimensional wave equation for azimuthally-travelling phonons. This wave equation shows that expansion redshifts the phonon frequency at a rate determined by the effective azimuthal sound speed, and damps the amplitude of the phonons at a rate given by $\dot{\cal V}/{\cal V}$, where $\cal{V}$ is the volume of the background condensate. This behavior is analogous to the redshifting and "Hubble friction" for quantum fields in the expanding universe and, given the scalings with radius determined by the shape of the ring potential, is consistent with recent experimental and theoretical results. The action-based dimensional reduction methods used here should be applicable in a variety of settings, and are well suited for systematic perturbation expansions.


Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funder for the research work leading to this publication