EFT and the SUSY index on the 2nd sheet

Davide Cassani, Zohar Komargodski

SciPost Phys. 11, 004 (2021) · published 9 July 2021

Abstract

The counting of BPS states in four-dimensional ${\cal N}=1$ theories has attracted a lot of attention in recent years. For superconformal theories, these states are in one-to-one correspondence with local operators in various short representations. The generating function for this counting problem has branch cuts and hence several Cardy-like limits, which are analogous to high-temperature limits. Particularly interesting is the second sheet, which has been shown to capture the microstates and phases of supersymmetric black holes in AdS$_5$. Here we present a 3d Effective Field Theory (EFT) approach to the high-temperature limit on the second sheet. We use the EFT to derive the behavior of the index at orders $\beta^{-2},\beta^{-1},\beta^0$. We also make a conjecture for $O(\beta)$, where we argue that the expansion truncates up to exponentially small corrections. An important point is the existence of vector multiplet zero modes, unaccompanied by massless matter fields. The runaway of Affleck-Harvey-Witten is however avoided by a non-perturbative confinement mechanism. This confinement mechanism guarantees that our results are robust.


Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication