SciPost logo

Spiking neuromorphic chip learns entangled quantum states

Stefanie Czischek, Andreas Baumbach, Sebastian Billaudelle, Benjamin Cramer, Lukas Kades, Jan M. Pawlowski, Markus K. Oberthaler, Johannes Schemmel, Mihai A. Petrovici, Thomas Gasenzer, Martin Gärttner

SciPost Phys. 12, 039 (2022) · published 26 January 2022

Abstract

The approximation of quantum states with artificial neural networks has gained a lot of attention during the last years. Meanwhile, analog neuromorphic chips, inspired by structural and dynamical properties of the biological brain, show a high energy efficiency in running artificial neural-network architectures for the profit of generative applications. This encourages employing such hardware systems as platforms for simulations of quantum systems. Here we report on the realization of a prototype using the latest spike-based BrainScaleS hardware allowing us to represent few-qubit maximally entangled quantum states with high fidelities. Bell correlations of pure and mixed two-qubit states are well captured by the analog hardware, demonstrating an important building block for simulating quantum systems with spiking neuromorphic chips.

Cited by 6

Crossref Cited-by

Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication