SciPost logo

The $U$-plane of rank-one 4d $\mathcal{N}=2$ KK theories

Cyril Closset, Horia Magureanu

SciPost Phys. 12, 065 (2022) · published 17 February 2022


The simplest non-trivial 5d superconformal field theories (SCFT) are the famous rank-one theories with $E_n$ flavour symmetry. We study their $U$-plane, which is the one-dimensional Coulomb branch of the theory on $\mathbb{R}^4 \times S^1$. The total space of the Seiberg-Witten (SW) geometry -- the $E_n$ SW curve fibered over the $U$-plane -- is described as a rational elliptic surface with a singular fiber of type $I_{9-n}$ at infinity. A classification of all possible Coulomb branch configurations, for the $E_n$ theories and their 4d descendants, is given by Persson's classification of rational elliptic surfaces. We show that the global form of the flavour symmetry group is encoded in the Mordell-Weil group of the SW elliptic fibration. We study in detail many special points in parameters space, such as points where the flavour symmetry enhances, and/or where Argyres-Douglas and Minahan-Nemeschansky theories appear. In a number of important instances, including in the massless limit, the $U$-plane is a modular curve, and we use modularity to investigate aspects of the low-energy physics, such as the spectrum of light particles at strong coupling and the associated BPS quivers. We also study the gravitational couplings on the $U$-plane, matching the infrared expectation for the couplings $A(U)$ and $B(U)$ to the UV computation using the Nekrasov partition function.

Cited by 6

Crossref Cited-by

Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funder for the research work leading to this publication