SciPost logo

Quantitative functional renormalization for three-dimensional quantum Heisenberg models

Nils Niggemann, Johannes Reuther, Björn Sbierski

SciPost Phys. 12, 156 (2022) · published 11 May 2022

Abstract

We employ a recently developed variant of the functional renormalization group method for spin systems, the so-called pseudo Majorana functional renormalization group, to investigate three-dimensional spin-1/2 Heisenberg models at finite temperatures. We study unfrustrated and frustrated Heisenberg systems on the simple cubic and pyrochlore lattices. Comparing our results with other quantum many-body techniques, we demonstrate a high quantitative accuracy of our method. Particularly, for the unfrustrated simple cubic lattice antiferromagnet ordering temperatures obtained from finite-size scaling of one-loop data deviate from error controlled quantum Monte Carlo results by $\sim5\%$ and we further confirm the established values for the critical exponent $\nu$ and the anomalous dimension $\eta$. As the PMFRG yields results in good agreement with QMC, but remains applicable when the system is frustrated, we next treat the pyrochlore Heisenberg antiferromagnet as a paradigmatic magnetically disordered system and find nearly perfect agreement of our two-loop static homogeneous susceptibility with other methods. We further investigate the broadening of pinch points in the spin structure factor as a result of quantum and thermal fluctuations and confirm a finite width in the extrapolated limit $T\rightarrow0$. While extensions towards higher loop orders $\ell$ seem to systematically improve our approach for magnetically disordered systems we also discuss subtleties when increasing $\ell$ in the presence of magnetic order. Overall, the pseudo Majorana functional renormalization group is established as a powerful many-body technique in quantum magnetism with a wealth of possible future applications.

Cited by 1

Crossref Cited-by

Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication