Asymptotics of Weil-Petersson volumes and two-dimensional quantum gravities
Luca Griguolo, Jacopo Papalini, Lorenzo Russo, Domenico Seminara
SciPost Phys. 17, 156 (2024) · published 6 December 2024
- doi: 10.21468/SciPostPhys.17.6.156
- Submissions/Reports
Abstract
We propose a refined expression for the large genus asymptotics of the Weil-Petersson volumes of the moduli space of super-Riemann surfaces with an arbitrary number of boundaries. Our formula leverages the connection between JT supergravity and its matrix model definition, utilizing some basic tools of resurgence theory. The final result holds for arbitrary boundary lengths and preserves the polynomial structure of the super-volumes. As a byproduct we also obtain a prediction for the large genus asymptotics of generalized $\Theta$-class intersection numbers. We extend our proposal to the case of the quantum volumes relevant for the Virasoro minimal string/Liouville gravity. Performing the classical limit on the quantum volumes, we recover a formula for the ordinary Weil-Petersson building blocks of JT gravity.
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 Luca Griguolo,
- 3 Jacopo Papalini,
- 4 5 Lorenzo Russo,
- 4 5 Domenico Seminara
- 1 Università degli Studi di Parma / University of Parma [UNIPR]
- 2 Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Parma / Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Parma [INFN-GCPR]
- 3 Universiteit Gent / Ghent University
- 4 Università degli Studi di Firenze / University of Florence [UniFI]
- 5 INFN Sezione di Firenze / INFN Sezione di Firenze [INFN]
- European Research Council [ERC]
- Instituto Nazionale di Fisica Nucleare (INFN) (through Organization: Istituto Nazionale di Fisica Nucleare / National Institute for Nuclear Physics [INFN])
- Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) (through Organization: Ministero dell'Istruzione, dell'Università e della Ricerca / Ministry of Education, Universities and Research [MIUR])