Semi-visible jets, energy-based models, and self-supervision
Luigi Favaro, Michael Krämer, Tanmoy Modak, Tilman Plehn, Jan Rüschkamp
SciPost Phys. 18, 042 (2025) · published 3 February 2025
- doi: 10.21468/SciPostPhys.18.2.042
- Submissions/Reports
-
Abstract
We present DarkCLR, a novel framework for detecting semi-visible jets at the LHC. DarkCLR uses a self-supervised contrastive-learning approach to create observables that are approximately invariant under relevant transformations. We use background-enhanced data to create a sensitive representation and evaluate the representations using a CLR-inspired anomaly score and a normalized autoencoder as density estimators. Our results show a remarkable sensitivity for a wide range of semi-visible jets and are more robust than a supervised classifier trained on a specific signal.
Supplementary Information
External links to supplemental resources; opens in a new tab.
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Luigi Favaro,
- 2 Michael Krämer,
- 1 Tanmoy Modak,
- 1 Tilman Plehn,
- 1 Jan Rüschkamp
- 1 Ruprecht-Karls-Universität Heidelberg / Heidelberg University
- 2 Rheinisch-Westfälische Technische Hochschule Aachen / RWTH Aachen University [RWTH]