Jose Carlos Pelayo, George Bougas, Thomás Fogarty, Thomas Busch, Simeon I. Mistakidis
SciPost Phys. 18, 129 (2025) ·
published 17 April 2025
|
· pdf
We explore the ground states and dynamics of ultracold atomic droplets in the crossover region from three to two dimensions by solving the two-dimensional and the quasi two-dimensional extended Gross-Pitaevskii equations numerically and with a variational approach. By systematically comparing the droplet properties, we determine the validity regions of the pure two-dimensional description, and therefore the dominance of the logarithmic nonlinear coupling, as a function of the sign of the averaged mean-field interactions and the size of the transverse confinement. One of our main findings is that droplets become substantially extended upon transitioning from negative-to-positive averaged mean-field interactions. This is accompanied by a significant reduction of their binding energies which are approximately inversely proportional to the square of their size. To explore fundamental dynamical properties in the crossover region, we study interaction quenches and show that the droplets perform a periodic breathing motion for modest quench strengths, while larger quench amplitudes lead to continuous expansion exhibiting density ring structures. We also showcase that it is possible to form complex bulk and surface density patterns in anisotropic geometries following the quench. Since we are working with realistic parameters, our results can directly facilitate future experimental realizations.
SciPost Phys. 15, 095 (2023) ·
published 14 September 2023
|
· pdf
We study the recently introduced self-pinning transition [Phys. Rev. Lett. 128, 053401 (2022)] in a quasi-one-dimensional two-component quantum gas in the case where the component immersed into the Bose-Einstein condensate has a finite intraspecies interaction strength. As a result of the matter-wave backaction, the fermionization in the limit of infinite intraspecies repulsion occurs via a first-order phase transition to the self-pinned state, which is in contrast to the asymptotic behavior in static trapping potentials. The system also exhibits an additional superfluid state for the immersed component if the interspecies interaction is able to overcome the intraspecies repulsion. We approximate the superfluid state in an analytical model and derive an expression for the phase transition line that coincides with well-known phase separation criteria in binary Bose systems. The full phase diagram of the system is mapped out numerically for the case of two and three atoms in the immersed component.
Tran Duong Anh-Tai, Mathias Mikkelsen, Thomas Busch, Thomás Fogarty
SciPost Phys. 15, 048 (2023) ·
published 4 August 2023
|
· pdf
The appearance of chaotic quantum dynamics significantly depends on the symmetry properties of a system, and in cold atomic systems many of these can be experimentally controlled. In this work, we systematically study the emergence of quantum chaos in a minimal system describing one-dimensional harmonically trapped Bose-Bose mixtures by tuning the particle-particle interactions. Using an improved exact diagonalization scheme, we examine the transition from integrability to chaos when the inter-component interaction changes from weak to strong. Our study is based on the analysis of the level spacing distribution and the distribution of the matrix elements of observables in terms of the eigenstate thermalization hypothesis and their dynamics. We show that one can obtain strong signatures of chaos by increasing the inter-component interaction strength and breaking the symmetry of intra-component interactions.
SciPost Phys. 6, 021 (2019) ·
published 8 February 2019
|
· pdf
We design and explore a shortcut to adiabaticity (STA) for changing the interaction strength between two ultracold, harmonically trapped bosons. Starting from initially uncorrelated, non-interacting particles, we assume a time-dependent tuning of the inter-particle interaction through a Feshbach resonance, such that the two particles are strongly interacting at the end of the driving. The efficiency of the STA is then quantified by examining the thermodynamic properties of the system, such as the irreversible work, which is related to the out-of-equilibrium excitations in the system. We also quantify the entanglement of the two-particle state through the von Neumann entropy and show that the entanglement produced in the STA process matches that of the desired target state. Given the fundamental nature of the two-atom problem in ultracold atomic physics, the presented shortcut can be expected to have significant impact on many processes that rely on inter-particle interactions.
Dr Fogarty: "We would like to thank the ref..."
in Submissions | report on Fast control of interactions in an ultracold two atom system: Managing correlations and irreversibility