SciPost Phys. 8, 063 (2020) ·
published 20 April 2020
|
· pdf
In this paper, we study the entanglement structure of mixed states in quantum many-body systems using the $\textit{negativity contour}$, a local measure of entanglement that determines which real-space degrees of freedom in a subregion are contributing to the logarithmic negativity and with what magnitude. We construct an explicit contour function for Gaussian states using the fermionic partial-transpose. We generalize this contour function to generic many-body systems using a natural combination of derivatives of the logarithmic negativity. Though the latter negativity contour function is not strictly positive for all quantum systems, it is simple to compute and produces reasonable and interesting results. In particular, it rigorously satisfies the positivity condition for all holographic states and those obeying the quasi-particle picture. We apply this formalism to quantum field theories with a Fermi surface, contrasting the entanglement structure of Fermi liquids and holographic (hyperscale violating) non-Fermi liquids. The analysis of non-Fermi liquids show anomalous temperature dependence of the negativity depending on the dynamical critical exponent. We further compute the negativity contour following a quantum quench and discuss how this may clarify certain aspects of thermalization.
SciPost Phys. 7, 037 (2019) ·
published 25 September 2019
|
· pdf
A basic diagnostic of entanglement in mixed quantum states is known as the positive partial transpose (PT) criterion. Such criterion is based on the observation that the spectrum of the partially transposed density matrix of an entangled state contains negative eigenvalues, in turn, used to define an entanglement measure called the logarithmic negativity. Despite the great success of logarithmic negativity in characterizing bosonic many-body systems, generalizing the operation of PT to fermionic systems remained a technical challenge until recently when a more natural definition of PT for fermions that accounts for the Fermi statistics has been put forward. In this paper, we study the many-body spectrum of the reduced density matrix of two adjacent intervals for one-dimensional free fermions after applying the fermionic PT. We show that in general there is a freedom in the definition of such operation which leads to two different definitions of PT: the resulting density matrix is Hermitian in one case, while it becomes pseudo-Hermitian in the other case. Using the path-integral formalism, we analytically compute the leading order term of the moments in both cases and derive the distribution of the corresponding eigenvalues over the complex plane. We further verify our analytical findings by checking them against numerical lattice calculations.