SciPost Phys. 17, 136 (2024) ·
published 15 November 2024
|
· pdf
In this paper, we study the twisted gauging on the (1+1)d lattice and construct various non-local mappings on the lattice operators. To be specific, we define the twisted Gauss law operator and implement the twisted gauging of the finite group on the lattice motivated by the orbifolding procedure in the conformal field theory, which involves the data of non-trivial element in the second cohomology group of the gauge group. We show the twisted gauging is equivalent to the two-step procedure of first applying the SPT entangler and then untwisted gauging. We use the twisted gauging to construct the triality (order 3) and $p$-ality (order $p$) mapping on the $\mathbb{Z}_p× \mathbb{Z}_p$ symmetric Hamiltonians, where $p$ is a prime. Such novel non-local mappings generalize Kramers-Wannier duality and they preserve the locality of symmetric operators but map charged operators to non-local ones. We further construct quantum process to realize these non-local mappings and analyze the induced mappings on the phase diagrams. For theories that are invariant under these non-local mappings, they admit the corresponding non-invertible symmetries. The non-invertible symmetry will constrain the theory at the multicritical point between the gapped phases. We further give the condition when the non-invertible symmetry can have symmetric gapped phase with a unique ground state.
Wei-Ting Kuo, Daniel Arovas, Smitha Vishveshwara, and Yi-Zhuang You
SciPost Phys. 11, 084 (2021) ·
published 28 October 2021
|
· pdf
We present a formulation for investigating quench dynamics across quantum phase transitions in the presence of decoherence. We formulate decoherent dynamics induced by continuous quantum non-demolition measurements of the instantaneous Hamiltonian. We generalize the well-studied universal Kibble-Zurek behavior for linear temporal drive across the critical point. We identify a strong decoherence regime wherein the decoherence time is shorter than the standard correlation time, which varies as the inverse gap above the groundstate. In this regime, we find that the freeze-out time $\bar{t}\sim\tau^{{2\nu z}/({1+2\nu z})}$ for when the system falls out of equilibrium and the associated freeze-out length $\bar{\xi}\sim\tau^{\nu/({1+2\nu z})}$ show power-law scaling with respect to the quench rate $1/\tau$, where the exponents depend on the correlation length exponent $\nu$ and the dynamical exponent $z$ associated with the transition. The universal exponents differ from those of standard Kibble-Zurek scaling. We explicitly demonstrate this scaling behavior in the instance of a topological transition in a Chern insulator system. We show that the freeze-out time scale can be probed from the relaxation of the Hall conductivity. Furthermore, on introducing disorder to break translational invariance, we demonstrate how quenching results in regions of imbalanced excitation density characterized by an emergent length scale which also shows universal scaling. We perform numerical simulations to confirm our analytical predictions and corroborate the scaling arguments that we postulate as universal to a host of systems.