SciPost Phys. 17, 155 (2024) ·
published 6 December 2024
|
· pdf
The Inozemtsev chain is an exactly solvable interpolation between the short-range Heisenberg and long-range Haldane–Shastry (HS) chains. In order to unlock its potential to study spin interactions with tunable interaction range using the powerful tools of integrability, the model's mathematical properties require better understanding. As a major step in this direction, we present a new generalisation of the Inozemtsev chain with spin symmetry reduced to $\textit{U}(1)$, interpolating between a Heisenberg XXZ chain and the XXZ-type HS chain, and integrable throughout. Underlying it is a new quantum many-body system that extends the elliptic Ruijsenaars system by including spins, contains the trigonometric spin-Ruijsenaars–Macdonald system as a special case, and yields our spin chain by 'freezing'. Our models have potential applications from condensed-matter to high-energy theory, and provide a crucial step towards a general theory for long-range integrability.
SciPost Phys. 11, 067 (2021) ·
published 22 September 2021
|
· pdf
The spin-1/2 Heisenberg XXZ chain is a paradigmatic quantum integrable model. Although it can be solved exactly via Bethe ansatz techniques, there are still open issues regarding the spectrum at root of unity values of the anisotropy. We construct Baxter's Q operator at arbitrary anisotropy from a two-parameter transfer matrix associated to a complex-spin auxiliary space. A decomposition of this transfer matrix provides a simple proof of the transfer matrix fusion and Wronskian relations. At root of unity a truncation allows us to construct the Q operator explicitly in terms of finite-dimensional matrices. From its decomposition we derive truncated fusion and Wronskian relations as well as an interpolation-type formula that has been conjectured previously. We elucidate the Fabricius-McCoy (FM) strings and exponential degeneracies in the spectrum of the six-vertex transfer matrix at root of unity. Using a semicyclic auxiliary representation we give a conjecture for creation and annihilation operators of FM strings for all roots of unity. We connect our findings with the 'string-charge duality' in the thermodynamic limit, leading to a conjecture for the imaginary part of the FM string centres with potential applications to out-of-equilibrium physics.
Submissions
Submissions for which this Contributor is identified as an author: