Alfredo Glioti, Riccardo Rattazzi, Lorenzo Ricci, Luca Vecchi
SciPost Phys. 18, 201 (2025) ·
published 20 June 2025
|
· pdf
We explore flavor dynamics in the broad scenario of a strongly interacting light Higgs (SILH). Our study focuses on the mechanism of partial fermion compositeness, but is otherwise as systematic as possible. Concretely, we classify the options for the underlying flavor (and CP) symmetries, which are necessary in order to bring this scenario safely within the range of present or future explorations. Our main goal in this context is to provide a practical map between the space of hypotheses (the models) and the experimental ground that will be explored in the medium and long term, in both indirect and direct searches, in practice at HL-LHC and Belle II, in EDM searches and eventually at FCC-hh. Our study encompasses scenarios with the maximal possible flavor symmetry, corresponding to minimal flavor violation (MFV), scenarios with no symmetry, corresponding to the so-called flavor anarchy, and various intermediate cases that complete the picture. One main result is that the scenarios that allow for the lowest new physics scale have intermediate flavor symmetry rather than the maximal symmetry of MFV models. Such optimal models are rather resilient to indirect exploration via flavor and CP violating observables, and can only be satisfactorily explored at a future high-energy collider. On the other hand, the next two decades of indirect exploration will significantly stress the parameter space of a large swath of less optimal but more generic models up to mass scales competing with those of the FCC-hh.
SciPost Phys. 8, 078 (2020) ·
published 15 May 2020
|
· pdf
The transition between the broken and unbroken phases of massive gauge theories, namely the rearrangement of longitudinal and Goldstone degrees of freedom that occurs at high energy, is not manifestly smooth in the standard formalism. The lack of smoothness concretely shows up as an anomalous growth with energy of the longitudinal polarization vectors, as they emerge in Feynman rules both for real on-shell external particles and for virtual particles from the decomposition of the gauge field propagator. This makes the characterization of Feynman amplitudes in the high-energy limit quite cumbersome, which in turn poses peculiar challenges in the study of Electroweak processes at energies much above the Electroweak scale. We develop a Lorentz-covariant formalism where polarization vectors are well-behaved and, consequently, energy power-counting is manifest at the level of individual Feynman diagrams. This allows us to prove the validity of the Effective $W$ Approximation and, more generally, the factorization of collinear emissions and to compute the corresponding splitting functions at the tree-level order. Our formalism applies at all orders in perturbation theory, for arbitrary gauge groups and generic linear gauge-fixing functionals. It can be used to simplify Standard Model loop calculations by performing the high-energy expansion directly on the Feynman diagrams. This is illustrated by computing the radiative corrections to the decay of the top quark.
Dr Vecchi: "Below is a summary of the chan..."
in Submissions | report on Goldstone Equivalence and High Energy Electroweak Physics