SciPost Phys. 18, 071 (2025) ·
published 26 February 2025
|
· pdf
Measurements are presented of the cross-section for the central exclusive production of $J/\psi\to\mu^+\mu^-$ and $\psi(2S)\to\mu^+\mu^-$ processes in proton-proton collisions at $\sqrt{s} = 13 \ \mathrm{TeV}$ with 2016–2018 data. They are performed by requiring both muons to be in the LHCb acceptance (with pseudorapidity $2<\eta_{\mu^{±}} < 4.5$) and mesons in the rapidity range $2.0 < y < 4.5$. The integrated cross-section results are \begin{align*} \sigma_{J/\psi\to\mu^+\mu^-}(2.0<y_{J/\psi}<4.5,2.0<\eta_{\mu^{±}} < 4.5) &= 400 ± 2 ± 5 ± 12 \ \mathrm{pb}\,,\\ \sigma_{\psi(2S)\to\mu^+\mu^-}(2.0<y_{\psi(2S)}<4.5,2.0<\eta_{\mu^{±}} < 4.5) &= 9.40 ± 0.15 ± 0.13 ± 0.27 \ \mathrm{pb}\,, \end{align*} where the uncertainties are statistical, systematic and due to the luminosity determination. In addition, a measurement of the ratio of $\psi(2S)$ and $J/\psi$ cross-sections, at an average photon-proton centre-of-mass energy of $1\ \mathrm{TeV}$, is performed, giving \begin{equation*} \frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi}} = 0.1763 ± 0.0029 ± 0.0008 ± 0.0039 \,, \end{equation*} where the first uncertainty is statistical, the second systematic and the third due to the knowledge of the involved branching fractions. For the first time, the dependence of the $J/\psi$ and $\psi(2S)$ cross-sections on the total transverse momentum transfer is determined in $pp$ collisions and is found consistent with the behaviour observed in electron-proton collisions.
Sean Benson, Adrián Casais Vidal, Xabier Cid Vidal, Albert Puig Navarro
SciPost Phys. 7, 062 (2019) ·
published 13 November 2019
|
· pdf
ALP-mediated decays and other as-yet unobserved $B$ decays to di-photon final states are a challenge to select in hadron collider environments due to the large backgrounds that come directly from the $pp$ collision. We present the strategy implemented by the LHCb experiment in 2018 to efficiently select such photon pairs. A fast neural network topology, implemented in the LHCb real-time selection framework achieves high efficiency across a mass range of $4-20$ GeV$/c^{2}$. We discuss implications and future prospects for the LHCb experiment.
Dr Cid Vidal: "Dear referee, thanks a lot ..."
in Submissions | report on Real-time discrimination of photon pairs using machine learning at the LHC