SciPost Phys. 12, 093 (2022) ·
published 15 March 2022
|
· pdf
We present an original strategy for the calculation of direct and inverse photo-emission spectra from first principles. The main goal is to go beyond the standard Green's function approaches, such as the $GW$ method, in order to find a good description not only of the quasiparticles but also of the satellite structures, which are of particular importance in strongly correlated materials. To this end we use as a key quantity the three-body Green's function, or, more precisely, its hole-hole-electron and electron-electron-hole parts, and we show how the one-body Green's function, and hence the corresponding spectral function, can be retrieved from it. We show that, contrary to the one-body Green's function, information about satellites is already present in the non-interacting three-body Green's function. Therefore, simple approximations to the three-body self-energy, which is defined by the Dyson equation for the three-body Green's function and which contains many-body effects, can still yield accurate spectral functions. In particular, the self-energy can be chosen to be static which could simplify a self-consistent solution of the Dyson equation. We give a proof of principle of our strategy by applying it to the Hubbard dimer, for which the exact self-energy is available.
Miguel Escobar Azor, Léa Brooke, Stefano Evangelisti, Thierry Leininger, Pierre-François Loos, Nicolas Suaud, J. A. Berger
SciPost Phys. Core 1, 001 (2019) ·
published 11 November 2019
|
· pdf
In this work we investigate Wigner localization at very low densities by means of the exact diagonalization of the Hamiltonian. This yields numerically exact results. In particular, we study a quasi-one-dimensional system of two electrons that are confined to a ring by three-dimensional gaussians placed along the ring perimeter. To characterize the Wigner localization we study several appropriate observables, namely the two-body reduced density matrix, the localization tensor and the particle-hole entropy. We show that the localization tensor is the most promising quantity to study Wigner localization since it accurately captures the transition from the delocalized to the localized state and it can be applied to systems of all sizes.
Dr Berger: "There seems to be a misunderst..."
in Submissions | report on Photoemission spectroscopy from the three-body Green's function