SciPost Phys. 13, 014 (2022) ·
published 8 August 2022
|
· pdf
We apply the conformal bootstrap technique to study the $U(1)$ Dirac spin liquid (i.e. $N_f=4$ QED$_3$) and the newly proposed $N=7$ Stiefel liquid (i.e. a conjectured 3d non-Lagrangian CFT without supersymmetry). For the $N_f=4$ QED$_3$, we focus on the monopole operator and ($SU(4)$ adjoint) fermion bilinear operator. We bootstrap their single correlators as well as the mixed correlators between them. We first discuss the bootstrap kinks from single correlators. Some exponents of these bootstrap kinks are close to the expected values of QED$_3$, but we provide clear evidence that they should not be identified as the QED$_3$. By requiring the critical phase to be stable on the triangular and the kagome lattice, we obtain rigorous numerical bounds for the $U(1)$ Dirac spin liquid and the Stiefel liquid. For the triangular and kagome Dirac spin liquid, the rigorous lower bounds of the monopole operator's scaling dimension are $1.046$ and $1.105$, respectively. These bounds are consistent with the latest Monte Carlo results.
SciPost Phys. 11, 111 (2021) ·
published 22 December 2021
|
· pdf
We propose a roadmap for bootstrapping conformal field theories (CFTs) described by gauge theories in dimensions $d>2$. In particular, we provide a simple and workable answer to the question of how to detect the gauge group in the bootstrap calculation. Our recipe is based on the notion of \emph{decoupling operator}, which has a simple (gauge) group theoretical origin, and is reminiscent of the null operator of $2d$ Wess-Zumino-Witten CFTs in higher dimensions. Using the decoupling operator we can efficiently detect the rank (i.e. color number) of gauge groups, e.g., by imposing gap conditions in the CFT spectrum. We also discuss the physics of the equation of motion, which has interesting consequences in the CFT spectrum as well. As an application of our recipes, we study a prototypical critical gauge theory, namely the scalar QED which has a $U(1)$ gauge field interacting with critical bosons. We show that the scalar QED can be solved by conformal bootstrap, namely we have obtained its kinks and islands in both $d=3$ and $d=2+\epsilon$ dimensions.
Marten Reehorst, Slava Rychkov, David Simmons-Duffin, Benoit Sirois, Ning Su, Balt van Rees
SciPost Phys. 11, 072 (2021) ·
published 28 September 2021
|
· pdf
Current numerical conformal bootstrap techniques carve out islands in theory space by repeatedly checking whether points are allowed or excluded. We propose a new method for searching theory space that replaces the binary information “allowed”/“excluded” with a continuous “navigator” function that is negative in the allowed region and positive in the excluded region. Such a navigator function allows one to efficiently explore high-dimensional parameter spaces and smoothly sail towards any islands they may contain. The specific functions we introduce have several attractive features: they are well-defined in large regions of parameter space, can be computed with standard methods, and evaluation of their gradient is immediate due to an SDP gradient formula that we provide. The latter property allows for the use of efficient quasi-Newton optimization methods, which we illustrate by navigating towards the 3d Ising island.
SciPost Phys. 10, 115 (2021) ·
published 26 May 2021
|
· pdf
It is well established that the $O(N)$ Wilson-Fisher (WF) CFT sits at a kink of the numerical bounds from bootstrapping four point function of $O(N)$ vector. Moving away from the WF kinks, there indeed exists another family of kinks (dubbed non-WF kinks) on the curve of $O(N)$ numerical bounds. Different from the $O(N)$ WF kinks that exist for arbitary $N$ in $2<d<4$ dimensions, the non-WF kinks exist in arbitrary dimensions but only for a large enough $N>N_c(d)$ in a given dimension $d$. In this paper we have achieved a thorough understanding for few special cases of these non-WF kinks. The first case is the $O(4)$ bootstrap in 2d, where the non-WF kink turns out to be the $SU(2)_1$ Wess-Zumino-Witten (WZW) model, and all the $SU(2)_{k>2}$ WZW models saturate the numerical bound on the left side of the kink. We further carry out dimensional continuation of the 2d $SU(2)_1$ kink towards the 3d $SO(5)$ deconfined phase transition. We find the kink disappears at around $d=2.7$ dimensions indicating the $SO(5)$ deconfined phase transition is weakly first order. The second interesting observation is, the $O(2)$ bootstrap bound does not show any kink in 2d ($N_c=2$), but is surprisingly saturated by the 2d free boson CFT (also called Luttinger liquid) all the way on the numerical curve. The last case is the $N=\infty$ limit, where the non-WF kink sits at $(\Delta_\phi, \Delta_T)=(d-1, 2d)$ in $d$ dimensions. We manage to write down its analytical four point function in arbitrary dimensions, which equals to the subtraction of correlation functions of a free fermion theory and generalized free theory. An important feature of this solution is the existence of a full tower of conserved higher spin current. We speculate that a new family of CFTs will emerge at non-WF kinks for finite $N$, in a similar fashion as $O(N)$ WF CFTs originating from free boson at $N=\infty$.