SciPost Phys. 15, 080 (2023) ·
published 6 September 2023
|
· pdf
We present a general framework in which both Krylov state and operator complexities can be put on the same footing. In our formalism, the Krylov complexity is defined in terms of the density matrix of the associated state which, for the operator complexity, lives on a doubled Hilbert space obtained through the channel-state map. This unified definition of complexity in terms of the density matrices enables us to extend the notion of Krylov complexity, to subregion or mixed state complexities and also naturally to the Krylov mutual complexity. We show that this framework also encompasses nicely the holographic notions of complexity.
SciPost Phys. 7, 073 (2019) ·
published 3 December 2019
|
· pdf
Using Papadodimas and Raju construction of operators describing the interior of a black hole, we present a general relation between partition functions of operators describing inside and outside the black hole horizon. In particular for an eternal black hole the partition function of the interior modes may be given in terms those partition functions associated with the modes of left and right exteriors. By making use of this relation we observe that setting a finite UV cutoff will enforce us to have a cutoff behind the horizon whose value is fixed by the UV cutoff. The resultant cutoff is in agreement with what obtained in the context of holographic complexity.