SciPost Phys. 17, 050 (2024) ·
published 13 August 2024
|
· pdf
We study binding of $N$ identical heavy fermions by a light atom in two dimensions assuming zero-range attractive heavy-light interactions. By using the mean-field theory valid for large $N$ we show that the $N+1$ cluster is bound when the mass ratio exceeds $1.074N^2$. The mean-field theory, being scale invariant in two dimensions, predicts only the shapes of the clusters leaving their sizes and energies undefined. By taking into account beyond-mean-field effects we find closed-form expressions for these quantities. We also discuss differences between the Thomas-Fermi and Hartree-Fock approaches for treating the heavy fermions.
SciPost Phys. 14, 091 (2023) ·
published 3 May 2023
|
· pdf
For sufficiently large mass ratios the attractive exchange force caused by a single light atom interacting with a few heavy identical fermions can overcome their Fermi degeneracy pressure and bind them into an $N+1$ cluster. Here, by using a mean-field approach valid for large $N$, we find that $N+1$ clusters can attract each other and form a self-bound charge density wave, the properties of which we fully characterize. Our work shows that there are no fundamental obstacles for having self-bound states in fermionic mixtures with zero-range interactions.