P. Amaro, A. Adamczak, M. Abdou Ahmed, L. Affolter, F. D. Amaro, P. Carvalho, T. L. Chen, L. M. P. Fernandes, M. Ferro, D. Goeldi, T. Graf, M. Guerra, T. W. HÃ¤nsch, C. A. O. Henriques, Y. C. Huang, P. Indelicato, O. Kara, K. Kirch, A. Knecht, F. Kottmann, Y. W. Liu, J. Machado, M. Marszalek, R. D. P. Mano, C. M. B. Monteiro, F. Nez, J. Nuber, A. Ouf, N. Paul, R. Pohl, E. Rapisarda, J. M. F. dos Santos, J. P. Santos, P. A. O. C. Silva, L. Sinkunaite, J. T. Shy, K. Schuhmann, S. Rajamohanan, A. Soter, L. Sustelo, D. Taqqu, L. B. Wang, F. Wauters, P. Yzombard, M. Zeyen, A. Antognini
SciPost Phys. 13, 020 (2022) ·
published 15 August 2022

· pdf
The CREMA collaboration is pursuing a measurement of the groundstate hyperfine splitting (HFS) in muonic hydrogen ($\mu$p) with 1 ppm accuracy by means of pulsed laser spectroscopy to determine the twophotonexchange contribution with $2\times10^{4}$ relative accuracy. In the proposed experiment, the $\mu$p atom undergoes a laser excitation from the singlet hyperfine state to the triplet hyperfine state, then is quenched back to the singlet state by an inelastic collision with a H$_2$ molecule. The resulting increase of kinetic energy after the collisional deexcitation is used as a signature of a successful laser transition between hyperfine states. In this paper, we calculate the combined probability that a $\mu$p atom initially in the singlet hyperfine state undergoes a laser excitation to the triplet state followed by a collisionalinduced deexcitation back to the singlet state. This combined probability has been computed using the optical Bloch equations including the inelastic and elastic collisions. Omitting the decoherence effects caused by the laser bandwidth and collisions would overestimate the transition probability by more than a factor of two in the experimental conditions. Moreover, we also account for Doppler effects and provide the matrix element, the saturation fluence, the elastic and inelastic collision rates for the singlet and triplet states, and the resonance linewidth. This calculation thus quantifies one of the key unknowns of the HFS experiment, leading to a precise definition of the requirements for the laser system and to an optimization of the hydrogen gas target where $\mu$p is formed and the laser spectroscopy will occur.
SciPost Phys. Proc. 5, 001 (2021) ·
published 6 September 2021

· pdf
Particle physics results of constant value and
significant impact have been obtained at PSI, and several efforts
are presently ongoing and expected to deliver new findings in the
near future. In this special SciPost volume we collect them together
in a concise manner. Not yet included are ideas for future facility
upgrades or completely new experimental efforts, but we are set to
extend this volume in the years to come.