SciPost Phys. Core 5, 016 (2022) ·
published 29 March 2022
|
· pdf
Scattering off the edge of a composite particle or finite--range interaction can precede that off its center. An effective theory treatment with pointlike particles and contact interactions must find that the scattered experimental wave is slightly advanced, in violation of causality (the fundamental underlying theory being causal). In practice, partial--wave or other projections of multivariate amplitudes exponentially grow with ${\rm Im}(E)$, so that analyticity is not sufficient to obtain a dispersion relation for them, but only for a slightly modified function (the modified relations additionally connect different $J$). This can limit the precision of certain dispersive approaches to compositeness based on Cauchy's theorem. Awareness of this may be of interest to some dispersive tests of the Standard Model with hadrons, and to unitarization methods used to extend electroweak effective theories. Interestingly, the Inverse Amplitude Method is safe (as the inverse amplitude has the opposite, convergent behavior allowing contour closure). Generically, one-dimensional sum rules such as for the photon vacuum polarization, form factors or the Adler function are not affected by this uncertainty; nor are fixed-$t$ dispersion relations, cleverly constructed to avoid it and whose consequences are solid.
Alexandre Salas-Bernárdez, Felipe J. Llanes-Estrada, Juan Escudero-Pedrosa, Jose Antonio Oller
SciPost Phys. 11, 020 (2021) ·
published 3 August 2021
|
· pdf
Effective Field Theories (EFTs) constructed as derivative expansions in powers of momentum, in the spirit of Chiral Perturbation Theory (ChPT), are a controllable approximation to strong dynamics as long as the energy of the interacting particles remains small, as they do not respect exact elastic unitarity. This limits their predictive power towards new physics at a higher scale if small separations from the Standard Model are found at the LHC or elsewhere. Unitarized chiral perturbation theory techniques have been devised to extend the reach of the EFT to regimes where partial waves are saturating unitarity, but their uncertainties have hitherto not been addressed thoroughly. Here we take one of the best known of them, the Inverse Amplitude Method (IAM), and carefully following its derivation, we quantify the uncertainty introduced at each step. We compare its hadron ChPT and its electroweak sector Higgs EFT applications. We find that the relative theoretical uncertainty of the IAM at the mass of the first resonance encountered in a partial-wave is of the same order in the counting as the starting uncertainty of the EFT at near-threshold energies, so that its unitarized extension should \textit{a priori} be expected to be reasonably successful. This is so provided a check for zeroes of the partial wave amplitude is carried out and, if they appear near the resonance region, we show how to modify adequately the IAM to take them into account.
Prof. Llanes-Estrada: "We also thank the second revie..."
in Submissions | report on Smearing of causality by compositeness divides dispersive approaches into exact ones and precision-limited ones