SciPost Phys. Codebases 2 (2022) ·
published 23 August 2022
|
· pdf
The introduction of Neural Quantum States (NQS) has recently given a new twist to variational Monte Carlo (VMC). The ability to systematically reduce the bias of the wave function ansatz renders the approach widely applicable. However, performant implementations are crucial to reach the numerical state of the art. Here, we present a Python codebase that supports arbitrary NQS architectures and model Hamiltonians. Additionally leveraging automatic differentiation, just-in-time compilation to accelerators, and distributed computing, it is designed to facilitate the composition of efficient NQS algorithms.
SciPost Phys. Codebases 2-r0.1 (2022) ·
published 23 August 2022
|
· src
The introduction of Neural Quantum States (NQS) has recently given a new twist to variational Monte Carlo (VMC). The ability to systematically reduce the bias of the wave function ansatz renders the approach widely applicable. However, performant implementations are crucial to reach the numerical state of the art. Here, we present a Python codebase that supports arbitrary NQS architectures and model Hamiltonians. Additionally leveraging automatic differentiation, just-in-time compilation to accelerators, and distributed computing, it is designed to facilitate the composition of efficient NQS algorithms.
SciPost Phys. 10, 147 (2021) ·
published 17 June 2021
|
· pdf
Strongly interacting quantum systems described by non-stoquastic Hamiltonians exhibit rich low-temperature physics. Yet, their study poses a formidable challenge, even for state-of-the-art numerical techniques. Here, we investigate systematically the performance of a class of universal variational wave-functions based on artificial neural networks, by considering the frustrated spin-$1/2$ $J_1-J_2$ Heisenberg model on the square lattice. Focusing on neural network architectures without physics-informed input, we argue in favor of using an ansatz consisting of two decoupled real-valued networks, one for the amplitude and the other for the phase of the variational wavefunction. By introducing concrete mitigation strategies against inherent numerical instabilities in the stochastic reconfiguration algorithm we obtain a variational energy comparable to that reported recently with neural networks that incorporate knowledge about the physical system. Through a detailed analysis of the individual components of the algorithm, we conclude that the rugged nature of the energy landscape constitutes the major obstacle in finding a satisfactory approximation to the ground state wavefunction, and prevents learning the correct sign structure. In particular, we show that in the present setup the neural network expressivity and Monte Carlo sampling are not primary limiting factors.
SciPost Phys. 4, 013 (2018) ·
published 28 February 2018
|
· pdf
The efficient representation of quantum many-body states with classical resources is a key challenge in quantum many-body theory. In this work we analytically construct classical networks for the description of the quantum dynamics in transverse-field Ising models that can be solved efficiently using Monte Carlo techniques. Our perturbative construction encodes time-evolved quantum states of spin-1/2 systems in a network of classical spins with local couplings and can be directly generalized to other spin systems and higher spins. Using this construction we compute the transient dynamics in one, two, and three dimensions including local observables, entanglement production, and Loschmidt amplitudes using Monte Carlo algorithms and demonstrate the accuracy of this approach by comparisons to exact results. We include a mapping to equivalent artificial neural networks, which were recently introduced to provide a universal structure for classical network wave functions.
Dr Schmitt: "Thank you for the thoughtful c..."
in Submissions | report on jVMC: Versatile and performant variational Monte Carlo leveraging automated differentiation and GPU acceleration