Samudrajit Thapa, Daniel Zaretzky, Ron Vatash, Grzegorz Gradziuk, Chase Broedersz, Yair Shokef, Yael Roichman
SciPost Phys. 17, 096 (2024) ·
published 1 October 2024
|
· pdf
In the absence of directional motion it is often hard to recognize athermal fluctuations. Probability currents provide such a measure in terms of the rate at which they enclose area in the reduced phase space. We measure this area enclosing rate for trapped colloidal particles, where only one particle is driven. By combining experiment, theory, and simulation, we single out the effect of the different time scales in the system on the measured probability currents. In this controlled experimental setup, particles interact hydrodynamically. These interactions lead to a strong spatial dependence of the probability currents and to a local influence of athermal agitation. In a multiple-particle system, we show that even when the driving acts only on one particle, probability currents occur between other, non-driven particles. This may have significant implications for the interpretation of fluctuations in biological systems containing elastic networks in addition to a suspending fluid.
Ben Pisanty, Erdal C. Oguz, Cristiano Nisoli, Yair Shokef
SciPost Phys. 10, 136 (2021) ·
published 8 June 2021
|
· pdf
Mechanical metamaterials present a promising platform for seemingly impossible mechanics. They often require incompatibility of their elementary building blocks, yet a comprehensive understanding of its role remains elusive. Relying on an analogy to ferromagnetic and antiferromagnetic binary spin interactions, we present a universal approach to identify and analyze topological mechanical defects for arbitrary building blocks. We underline differences between two- and three-dimensional metamaterials, and show how topological defects can steer stresses and strains in a controlled and non-trivial manner and can inspire the design of materials with hitherto unknown complex mechanical response.