SciPost Phys. 19, 008 (2025) ·
published 4 July 2025
|
· pdf
We study Kac operators (e.g. energy operator) in percolation and self-avoiding walk bulk CFTs with central charge $c=0$. The proper normalizations of these operators can be deduced at generic $c$ by requiring the finiteness and reality of the three-point constants in cluster and loop model CFTs. At $c=0$, Kac operators become zero-norm states and the bottom fields of logarithmic multiplets, and comparison with $c<1$ Liouville CFT suggests the potential existence of arbitrarily high rank Jordan blocks. We give a generic construction of logarithmic operators based on Kac operators and focus on the rank-2 pair of the energy operator mixing with the hull operator. By taking the $c\to 0$ limit, we compute some of their conformal data and use this to investigate the operator algebra at $c=0$. Based on cluster decomposition, we find that, contrary to previous belief, the four-point correlation function of the bulk energy operator does not vanish at $c=0$, and a crucial role is played by its coupling to the rank-3 Jordan block associated with the second energy operator. This reveals the intriguing way zero-norm operators build long-range higher-point correlations through the intricate logarithmic structures in $c=0$ bulk CFTs.
SciPost Phys. 12, 100 (2022) ·
published 21 March 2022
|
· pdf
It has long been understood that non-trivial Conformal Field Theories (CFTs) with vanishing central charge ($c=0$) are logarithmic. So far however, the structure of the identity module -- the (left and right) Virasoro descendants of the identity field -- had not been elucidated beyond the stress-energy tensor $T$ and its logarithmic partner $t$ (the solution of the "$c\to 0$ catastrophe"). In this paper, we determine this structure together with the associated OPE of primary fields up to level $h=\bar{h}=2$ for polymers and percolation CFTs. This is done by taking the $c\to 0$ limit of $O(n)$ and Potts models and combining recent results from the bootstrap with arguments based on conformal invariance and self-duality. We find that the structure contains a rank-3 Jordan cell involving the field $T\bar{T}$, and is identical for polymers and percolation. It is characterized in part by the common value of a non-chiral logarithmic coupling $a_0=-{25\over 48}$.