Stephen Ebert, Eliot Hijano, Per Kraus, Ruben Monten, Richard M. Myers
SciPost Phys. 13, 038 (2022) ·
published 29 August 2022
|
· pdf
Pure three-dimensional gravity is a renormalizable theory with two free parameters labelled by $G$ and $\Lambda$. As a consequence, correlation functions of the boundary stress tensor in AdS$_3$ are uniquely fixed in terms of one dimensionless parameter, which is the central charge of the Virasoro algebra. The same argument implies that AdS$_3$ gravity at a finite radial cutoff is a renormalizable theory, but now with one additional parameter corresponding to the cutoff location. This theory is conjecturally dual to a $T\overline{T}$-deformed CFT, assuming that such theories actually exist. To elucidate this, we study the quantum theory of boundary gravitons living on a cutoff planar boundary and the associated correlation functions of the boundary stress tensor. We compute stress tensor correlation functions to two-loop order ($G$ being the loop counting parameter), extending existing tree level results. This is made feasible by the fact that the boundary graviton action simplifies greatly upon making a judicious field redefinition, turning into the Nambu-Goto action. After imposing Lorentz invariance, the correlators at this order are found to be unambiguous up to a single undetermined renormalization parameter.
SciPost Phys. 11, 070 (2021) ·
published 27 September 2021
|
· pdf
The quantization of pure 3D gravity with Dirichlet boundary conditions on a finite boundary is of interest both as a model of quantum gravity in which one can compute quantities which are "more local" than S-matrices or asymptotic boundary correlators, and for its proposed holographic duality to $T \overline{T}$-deformed CFTs. In this work we apply covariant phase space methods to deduce the Poisson bracket algebra of boundary observables. The result is a one-parameter nonlinear deformation of the usual Virasoro algebra of asymptotically AdS$_3$ gravity. This algebra should be obeyed by the stress tensor in any $T\overline{T}$-deformed holographic CFT. We next initiate quantization of this system within the general framework of coadjoint orbits, obtaining - in perturbation theory - a deformed version of the Alekseev-Shatashvili symplectic form and its associated geometric action. The resulting energy spectrum is consistent with the expected spectrum of $T\overline{T}$-deformed theories, although we only carry out the explicit comparison to $\mathcal{O}(1/\sqrt{c})$ in the $1/c$ expansion.