SciPost Phys. 15, 126 (2023) ·
published 2 October 2023
|
· pdf
The layered material SrCu$_2$(BO$_3$)$_2$ has long been studied because of its fascinating physics in a magnetic field and under pressure. Many of its properties are remarkably well described by the Shastry-Sutherland model (SSM) - a two-dimensional frustrated spin system. However, the extent of the intermediate plaquette phase discovered in SrCu$_2$(BO$_3$)$_2$ under pressure is significantly smaller than predicted in theory, which is likely due to the weak interlayer coupling that is present in the material but neglected in the model. Using state-of-the-art tensor network methods we study the SSM with a weak interlayer coupling and show that the intermediate plaquette phase is destabilized already at a smaller value around $J''/J\sim0.04-0.05$ than previously predicted from series expansion. Based on our phase diagram we estimate the effective interlayer coupling in SrCu$_2$(BO$_3$)$_2$ to be around $J''/J\sim 0.027$ at ambient pressure.
Lukas Weber, Andreas Honecker, Bruce Normand, Philippe Corboz, Frédéric Mila, Stefan Wessel
SciPost Phys. 12, 054 (2022) ·
published 8 February 2022
|
· pdf
The phase diagrams of highly frustrated quantum spin systems can exhibit first-order quantum phase transitions and thermal critical points even in the absence of any long-ranged magnetic order. However, all unbiased numerical techniques for investigating frustrated quantum magnets face significant challenges, and for generic quantum Monte Carlo methods the challenge is the sign problem. Here we report on a general quantum Monte Carlo approach with a loop-update scheme that operates in any basis, and we show that, with an appropriate choice of basis, it allows us to study a frustrated model of coupled spin-1/2 trimers: simulations of the trilayer Heisenberg antiferromagnet in the spin-trimer basis are sign-problem-free when the intertrimer couplings are fully frustrated. This model features a first-order quantum phase transition, from which a line of first-order transitions emerges at finite temperatures and terminates in a thermal critical point. The trimer unit cell hosts an internal degree of freedom that can be controlled to induce an extensive entropy jump at the quantum transition, which alters the shape of the first-order line. We explore the consequences for the thermal properties in the vicinity of the critical point, which include profound changes in the lines of maxima defined by the specific heat. Our findings reveal trimer quantum magnets as fundamental systems capturing in full the complex thermal physics of the strongly frustrated regime.
SciPost Phys. 12, 006 (2022) ·
published 6 January 2022
|
· pdf
The excitation ansatz for tensor networks is a powerful tool for simulating the low-lying quasiparticle excitations above ground states of strongly correlated quantum many-body systems. Recently, the two-dimensional tensor network class of infinite entangled pair states gained new ground state optimization methods based on automatic differentiation, which are at the same time highly accurate and simple to implement. Naturally, the question arises whether these new ideas can also be used to optimize the excitation ansatz, which has recently been implemented in two dimensions as well. In this paper, we describe a straightforward way to reimplement the framework for excitations using automatic differentiation, and demonstrate its performance for the Hubbard model at half filling.
Korbinian Kottmann, Philippe Corboz, Maciej Lewenstein, Antonio Acín
SciPost Phys. 11, 025 (2021) ·
published 9 August 2021
|
· pdf
We demonstrate how to map out the phase diagram of a two dimensional quantum many body system with no prior physical knowledge by applying deep \textit{anomaly detection} to ground states from infinite projected entangled pair state simulations. As a benchmark, the phase diagram of the 2D frustrated bilayer Heisenberg model is analyzed, which exhibits a second-order and two first-order quantum phase transitions. We show that in order to get a good qualitative picture of the transition lines, it suffices to use data from the cost-efficient simple update optimization. Results are further improved by post-selecting ground-states based on their energy at the cost of contracting the tensor network once. Moreover, we show that the mantra of ``more training data leads to better results'' is not true for the learning task at hand and that, in principle, one training example suffices for this learning task. This puts the necessity of neural network optimizations for these learning tasks in question and we show that, at least for the model and data at hand, a simple geometric analysis suffices.
SciPost Phys. 3, 030 (2017) ·
published 28 October 2017
|
· pdf
Using infinite projected entangled pair states, we study the ground state phase diagram of the spin-1 bilinear-biquadratic Heisenberg model on the square lattice directly in the thermodynamic limit. We find an unexpected partially nematic partially magnetic phase in between the antiferroquadrupolar and ferromagnetic regions. Furthermore, we describe all observed phases and discuss the nature of the phase transitions involved.