SciPost Phys. 17, 032 (2024) ·
published 2 August 2024
|
· pdf
Primordial black holes (PBHs) can make up all of the dark matter (DM) if their mass, $m$, is in the so-called "asteroid-mass window", $10^{17} g ≲ m ≲ 10^{22} g$. Observational constraints on the abundance of PBHs are usually calculated assuming they all have the same mass, however this is unlikely to be a good approximation. PBHs formed from the collapse of large density perturbations during radiation domination are expected to have an extended mass function (MF), due to the effects of critical collapse. The PBH MF is often assumed to be lognormal, however it has recently been shown that other functions are a better fit to numerically calculated MFs. We recalculate both current and potential future constraints for these improved fitting functions. We find that for current constraints the asteroid-mass window narrows, but remains open (i.e. all of the DM can be in the form of PBHs) unless the PBH MF is wider than expected. Future evaporation and microlensing constraints may together exclude all of the DM being in PBHs, depending on the width of the PBH MF and also the shape of its low and high mass tails.
SciPost Phys. Lect. Notes 37 (2022) ·
published 25 January 2022
|
· pdf
These lecture notes aim to provide an introduction to dark matter from the perspective of astrophysics/cosmology. We start with a rapid overview of cosmology, including the evolution of the Universe, its thermal history and structure formation. Then we look at the observational evidence for dark matter, from observations of galaxies, galaxy clusters, the anisotropies in the cosmic microwave background radiation and large scale structure. To detect dark matter we need to know how it's distributed, in particular in the Milky Way, so next we overview relevant results from numerical simulations and observations. Finally, we conclude by looking at what astrophysical and cosmological observations can tell us about the nature of dark matter, focusing on two particular cases: warm and self-interacting dark matter.
Prof. Green: "We are grateful to the referee..."
in Submissions | report on How open is the asteroid-mass primordial black hole window?